params <- list(EVAL = FALSE) ## ----message=FALSE, warning=FALSE, include=FALSE------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE ) if (!requireNamespace("dplyr", quietly = TRUE) || !requireNamespace("sandwich", quietly = TRUE) || !requireNamespace("lme4", quietly = TRUE) || !requireNamespace("clubSandwich", quietly = TRUE)) { knitr::opts_chunk$set(eval = FALSE) } else { knitr::opts_chunk$set(eval = TRUE) library(sjPlot) library(dplyr) } set.seed(333) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- data(iris) model <- lm(Petal.Length ~ Sepal.Length * Species + Sepal.Width, data = iris) # model parameters, where SE, CI and p-values are based on robust estimation tab_model(model, vcov.fun = "HC3", show.se = TRUE) # compare standard errors to result from sandwich-package unname(sqrt(diag(sandwich::vcovHC(model)))) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # change estimation-type tab_model(model, vcov.fun = "CL", vcov.args = list(type = "HC1"), show.se = TRUE) # compare standard errors to result from sandwich-package unname(sqrt(diag(sandwich::vcovCL(model)))) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris))) # change estimation-type, defining additional arguments tab_model( model, vcov.fun = "CL", vcov.args = list(type = "HC1", cluster = iris$cluster), show.se = TRUE ) # compare standard errors to result from sandwich-package unname(sqrt(diag(sandwich::vcovCL(model, cluster = iris$cluster)))) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # create fake-cluster-variable, to demonstrate cluster robust standard errors iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris))) # cluster-robust estimation tab_model( model, vcov.fun = "CR1", vcov.args = list(cluster = iris$cluster), show.se = TRUE ) # compare standard errors to result from clubSsandwich-package unname(sqrt(diag(clubSandwich::vcovCR(model, type = "CR1", cluster = iris$cluster)))) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # model parameters, robust estimation on standardized model tab_model( model, show.std = "std", vcov.fun = "HC" ) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- library(lme4) data(iris) set.seed(1234) iris$grp <- as.factor(sample(1:3, nrow(iris), replace = TRUE)) # fit example model model <- lme4::lmer( Sepal.Length ~ Species * Sepal.Width + Petal.Length + (1 | grp), data = iris ) # normal model parameters, like from 'summary()' tab_model(model) # model parameters, cluster robust estimation for mixed models tab_model( model, vcov.fun = "CR1", vcov.args = list(cluster = iris$grp) ) ## ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # model parameters, cluster robust estimation on standardized mixed model tab_model( model, show.std = "std", vcov.fun = "CR1", vcov.args = list(cluster = iris$grp) )