## ----setup-------------------------------------------------------------------- library(sjtable2df) library(mlbench) library(magrittr) # load data data("PimaIndiansDiabetes2") dataset <- PimaIndiansDiabetes2 %>% data.table::as.data.table() # create new binary variable dataset[, ("preg_gt_4") := ifelse(get("pregnant") > 4, 1, 0) %>% factor()] ## ----------------------------------------------------------------------------- xtab <- sjPlot::tab_xtab( var.row = dataset$diabetes, var.col = dataset$preg_gt_4, show.summary = TRUE, use.viewer = FALSE ) ## ----results='asis'----------------------------------------------------------- xtab ## ----------------------------------------------------------------------------- xtab_df <- sjtable2df::xtab2df(xtab = xtab, output = "data.frame") class(xtab_df) xtab_df ## ----------------------------------------------------------------------------- xtab_kbl <- sjtable2df::xtab2df( xtab = xtab, output = "kable", caption = "Diabetes vs. preg>4", col.names = c("Diabetes", "No", "Yes", "Total") ) class(xtab_kbl) xtab_kbl %>% kableExtra::add_header_above( header = c(" " = 1, "Pregnant > 4" = 2, " " = 1) ) ## ----------------------------------------------------------------------------- xtab <- sjPlot::tab_xtab( var.row = dataset$diabetes, var.col = dataset$preg_gt_4, show.summary = TRUE, show.col.prc = TRUE, use.viewer = FALSE ) ## ----results='asis'----------------------------------------------------------- xtab ## ----------------------------------------------------------------------------- xtab_df <- sjtable2df::xtab2df(xtab = xtab, output = "data.frame") xtab_df ## ----------------------------------------------------------------------------- m0 <- lm( pressure ~ 1, data = dataset ) m1 <- lm( pressure ~ glucose, data = dataset ) m2 <- lm( pressure ~ glucose + diabetes, data = dataset ) ## ----------------------------------------------------------------------------- m_table <- sjPlot::tab_model( m0, m1, m2, show.aic = TRUE ) ## ----results='asis'----------------------------------------------------------- m_table ## ----------------------------------------------------------------------------- mtab_df <- sjtable2df::mtab2df( mtab = m_table, n_models = 3, output = "data.frame" ) class(mtab_df) mtab_df ## ----------------------------------------------------------------------------- mtab_kbl <- sjtable2df::mtab2df( mtab = m_table, n_models = 3, output = "kable" ) class(mtab_kbl) mtab_kbl ## ----------------------------------------------------------------------------- m0 <- stats::glm( diabetes ~ 1, data = dataset, family = binomial(link = "logit") ) m1 <- stats::glm( diabetes ~ glucose, data = dataset, family = binomial(link = "logit") ) m2 <- stats::glm( diabetes ~ glucose + pressure, data = dataset, family = binomial(link = "logit") ) ## ----------------------------------------------------------------------------- m_table <- sjPlot::tab_model( m0, m1, m2, show.aic = TRUE ) ## ----results='asis'----------------------------------------------------------- m_table ## ----------------------------------------------------------------------------- mtab_df <- sjtable2df::mtab2df( mtab = m_table, n_models = 3, output = "data.frame" ) class(mtab_df) mtab_df ## ----------------------------------------------------------------------------- mtab_kbl <- sjtable2df::mtab2df( mtab = m_table, n_models = 3, output = "kable" ) class(mtab_kbl) mtab_kbl ## ----------------------------------------------------------------------------- set.seed(1) dataset$city <- sample( x = paste0("city_", 1:7), size = nrow(dataset), replace = TRUE ) m0 <- lme4::glmer( diabetes ~ 1 + (1 | city), data = dataset, family = binomial(link = "logit") ) m1 <- lme4::glmer( diabetes ~ mass + (1 | city), data = dataset, family = binomial(link = "logit") ) m2 <- lme4::glmer( diabetes ~ mass + log(pressure) + (1 | city), data = dataset, family = binomial(link = "logit") ) ## ----------------------------------------------------------------------------- m_table <- sjPlot::tab_model( m0, m1, m2, show.aic = TRUE ) ## ----results='asis'----------------------------------------------------------- m_table ## ----------------------------------------------------------------------------- mtab_df <- sjtable2df::mtab2df( mtab = m_table, n_models = 3, output = "data.frame" ) class(mtab_df) mtab_df ## ----------------------------------------------------------------------------- mtab_kbl <- sjtable2df::mtab2df( mtab = m_table, n_models = 3, output = "kable" ) class(mtab_kbl) mtab_kbl