## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(spBPS) ## ----warning=FALSE, message=F------------------------------------------------- library(foreach) library(parallel) library(doParallel) library(tictoc) library(MBA) library(classInt) library(RColorBrewer) library(sp) library(fields) library(mvnfast) ## ----results=F---------------------------------------------------------------- # dimensions n <- 1000 u <- 250 p <- 2 # parameters B <- c(-0.75, 1.85) tau2 <- 0.25 sigma2 <- 1 delta <- tau2/sigma2 phi <- 4 set.seed(4-8-15-16-23-42) # generate sintethic data crd <- matrix(runif((n+u) * 2), ncol = 2) X_or <- cbind(rep(1, n+u), matrix(runif((p-1)*(n+u)), ncol = (p-1))) D <- arma_dist(crd) Rphi <- exp(-phi * D) W_or <- matrix(0, n+u) + mniw::rmNorm(1, rep(0, n+u), sigma2*Rphi) Y_or <- X_or %*% B + W_or + mniw::rmNorm(1, rep(0, n+u), diag(delta*sigma2, n+u)) # train data crd_s <- crd[1:n, ] X <- X_or[1:n, ] W <- W_or[1:n, ] Y <- Y_or[1:n, ] # prediction data crd_u <- crd[-(1:n), ] X_u <- X_or[-(1:n), ] W_u <- W_or[-(1:n), ] Y_u <- Y_or[-(1:n), ] ## ----results=F---------------------------------------------------------------- # hyperparameters values delta_seq <- c(0.2, 0.25, 0.3) phi_seq <- c(3, 4, 5) # function for the fit loop fit_loop <- function(i) { Yi <- data_part$Y_list[[i]] Xi <- data_part$X_list[[i]] crd_i <- data_part$crd_list[[i]] p <- ncol(Xi) bps <- spBPS::BPS_weights(data = list(Y = Yi, X = Xi), priors = list(mu_b = matrix(rep(0, p)), V_b = diag(10, p), a = 2, b = 2), coords = crd_i, hyperpar = list(delta = delta_seq, phi = phi_seq), K = 5) w_hat <- bps$W epd <- bps$epd result <- list(epd, w_hat) return(result) } # function for the pred loop pred_loop <- function(r) { ind_s <- subset_ind[r] Ys <- matrix(data_part$Y_list[[ind_s]]) Xs <- data_part$X_list[[ind_s]] crds <- data_part$crd_list[[ind_s]] Ws <- W_list[[ind_s]] result <- spBPS::BPS_post(data = list(Y = Ys, X = Xs), coords = crds, X_u = X_u, crd_u = crd_u, priors = list(mu_b = matrix(rep(0, p)), V_b = diag(10, p), a = 2, b = 2), hyperpar = list(delta = delta_seq, phi = phi_seq), W = Ws, R = 1) return(result) } # subsetting data subset_size <- 500 K <- n/subset_size data_part <- subset_data(data = list(Y = matrix(Y), X = X, crd = crd_s), K = K) ## ----results=F---------------------------------------------------------------- # number of clusters for parallel implementation n.core <- 2 # list of function funs_fit <- lsf.str()[which(lsf.str() != "fit_loop")] # list of function funs_pred <- lsf.str()[which(lsf.str() != "pred_loop")] # starting cluster cl <- makeCluster(n.core) registerDoParallel(cl) # timing tic("total") # parallelized subset computation of GP in different cores tic("fit") obj_fit <- foreach(i = 1:K, .noexport = funs_fit) %dopar% { fit_loop(i) } fit_time <- toc() gc(verbose = F) # Combination using double BPS tic("comb") comb_bps <- BPS_combine(obj_fit, K, 1) comb_time <- toc() Wbps <- comb_bps$W W_list <- comb_bps$W_list gc(verbose = F) # parallelized subset computation of GP in different cores R <- 250 subset_ind <- sample(1:K, R, T, Wbps) tic("prediction") predictions <- foreach(r = 1:R, .noexport = funs_pred) %dopar% { pred_loop(r) } prd_time <- toc() # timing tot_time <- toc() # closing cluster stopCluster(cl) gc(verbose = F) ## ----------------------------------------------------------------------------- # statistics computations W pred_mat_W <- sapply(1:R, function(r){predictions[[r]][[1]]}) post_mean_W <- rowMeans(pred_mat_W) post_var_W <- apply(pred_mat_W, 1, sd) post_qnt_W <- apply(pred_mat_W, 1, quantile, c(0.025, 0.975)) # Empirical coverage for W coverage_W <- mean(W_u >= post_qnt_W[1,] & W_u <= post_qnt_W[2,]) cat("Empirical coverage for Spatial process:", round(coverage_W, 3),"\n") # statistics computations Y pred_mat_Y <- sapply(1:R, function(r){predictions[[r]][[2]]}) post_mean_Y <- rowMeans(pred_mat_Y) post_var_Y <- apply(pred_mat_Y, 1, sd) post_qnt_Y <- apply(pred_mat_Y, 1, quantile, c(0.025, 0.975)) # Empirical coverage for Y coverage_Y <- mean(Y_u >= post_qnt_Y[1,] & Y_u <= post_qnt_Y[2,]) cat("Empirical coverage for Response:", round(coverage_Y, 3),"\n") # Root Mean Square Prediction Error rmspe_W <- sqrt( mean( (W_u - post_mean_W)^2 ) ) rmspe_Y <- sqrt( mean( (Y_u - post_mean_Y)^2 ) ) cat("RMSPE for Spatial process:", round(rmspe_W, 3), "\n") cat("RMSPE for Response:", round(rmspe_Y, 3), "\n") ## ----echo=F, fig.dim = c(7.25, 4)--------------------------------------------- # True spatial process surface interpolation h <- 12 surf.W <- MBA::mba.surf(cbind(crd_s, W), no.X = 500, no.Y = 500, exten = TRUE, sp = TRUE, h = h)$xyz.est surf.brks <- classIntervals(surf.W$z, 100, 'pretty')$brks col.pal <- colorRampPalette(brewer.pal(11,'RdBu')[11:1]) xlim <- c(0, 1) zlim <- range(surf.W$z) # image for plot iw <- as.image.SpatialGridDataFrame(surf.W) # BPS surfaces interpolation h <- 12 surf.Wp <- MBA::mba.surf(cbind(crd_u, post_mean_W), no.X = 500, no.Y = 500, exten = TRUE, sp = TRUE, h = h)$xyz.est zlimp <- range(surf.Wp$z) # image for plot iwp <- as.image.SpatialGridDataFrame(surf.Wp) # Plotting oldpar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) plot(crd, type="n", cex=0.5, xlim=xlim, axes=FALSE, ylab="Northing", xlab="Easting", main="Spatial process") axis(2, las=1) axis(1) image.plot(iw, add=TRUE, col=rev(col.pal(length(surf.brks)-1)), zlim=zlim) plot(crd, type="n", cex=0.5, xlim=xlim, axes=F, ylab="Northing", xlab="Easting") title(main="Spatial process (Prediction)") mtext(side = 3, paste("RMSPE :", round(rmspe_W, 3))) axis(2, las=1) axis(1) image.plot(iwp, add=TRUE, col=rev(col.pal(length(surf.brks)-1)), zlim=zlimp) par(oldpar) ## ----echo=F, fig.dim = c(7.25, 4)--------------------------------------------- # True response surface interpolation h <- 12 surf.Y <- MBA::mba.surf(cbind(crd_s, Y), no.X = 500, no.Y = 500, exten = TRUE, sp = TRUE, h = h)$xyz.est surf.brks <- classIntervals(surf.Y$z, 100, 'pretty')$brks col.pal <- colorRampPalette(brewer.pal(11,'RdBu')[11:1]) xlim <- c(0, 1) zlim <- range(surf.Y$z) # image for plot iy <- as.image.SpatialGridDataFrame(surf.Y) # BPS surfaces interpolation h <- 12 surf.Yp <- MBA::mba.surf(cbind(crd_u, post_mean_Y), no.X = 500, no.Y = 500, exten = TRUE, sp = TRUE, h = h)$xyz.est zlimp <- range(surf.Yp$z) # image for plot iyp <- as.image.SpatialGridDataFrame(surf.Yp) # Plotting oldpar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) plot(crd, type="n", cex=0.5, xlim=xlim, axes=FALSE, ylab="Northing", xlab="Easting", main="Response") axis(2, las=1) axis(1) image.plot(iy, add=TRUE, col=rev(col.pal(length(surf.brks)-1)), zlim=zlim) plot(crd, type="n", cex=0.5, xlim=xlim, axes=F, ylab="Northing", xlab="Easting") title(main="Response (Prediction)") mtext(side = 3, paste("RMSPE :", round(rmspe_Y, 3))) axis(2, las=1) axis(1) image.plot(iyp, add=TRUE, col=rev(col.pal(length(surf.brks)-1)), zlim=zlimp) par(oldpar)