## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----message = FALSE, collapse = TRUE, warning = FALSE------------------------ library(spdep) library(spatialreg) library(sf) library(ggplot2) ## ----message = FALSE, collapse = TRUE----------------------------------------- library(spqdep) data("provinces_spain", package = "spqdep") data("FastFood.sf", package = "spqdep") data("Boots.sf", package = "spqdep") ## ----------------------------------------------------------------------------- set.seed(123) N <- 100 cx <- runif(N) cy <- runif(N) coor <- cbind(cx,cy) p <- c(1/6,3/6,2/6) # proportion of classes rho = 0.5 # level of spatial structure listw <- spdep::nb2listw(spdep::knn2nb(spdep::knearneigh(coor, k = 4))) fx <- dgp.spq(list = listw, p = p, rho = rho) ## ----results='hide'----------------------------------------------------------- ggplot(data.frame(fx = fx, cx = cx, cy = cy), ggplot2::aes(x = cx, y = cy, color = fx)) + geom_point(size = 6) + theme_bw() ## ----------------------------------------------------------------------------- m = 3 r = 1 mh <- m.surround(x = cbind(cx,cy), m = m, r = r) class(mh) ## ----print mh----------------------------------------------------------------- print(mh) ## ----summary mh--------------------------------------------------------------- summary(mh) ## ----plot mh------------------------------------------------------------------ plot(mh, type = 1) ## ----plot mh prune------------------------------------------------------------ control <- list (dtmaxknn = 10) mh.prune <- m.surround(x = coor, m = m, r = r, control = control) plot(mh.prune) ## ----------------------------------------------------------------------------- q.test <- Q.test(fx = fx, coor = coor, m = 3, r = 1) ## ----------------------------------------------------------------------------- q.test.mc <- Q.test(fx = fx, coor = coor, m = 3, r = 1, distr = "mc") summary(q.test.mc) ## ----------------------------------------------------------------------------- summary(q.test) ## ----------------------------------------------------------------------------- plot(q.test) ## ----warning = FALSE---------------------------------------------------------- sf_use_s2(FALSE) provinces_spain$GenderRatio <- factor(provinces_spain$Mal2Fml > 100) levels(provinces_spain$GenderRatio) = c("men","woman") f1 <- ~ provinces_spain$GenderRatio q.test.sf <- Q.test(formula = f1, data = provinces_spain, m = 3, r = 1) ## ----------------------------------------------------------------------------- plot(q.test.sf) ## ----------------------------------------------------------------------------- p <- c(1/6,3/6,2/6) rho = 0.5 QY1 <- dgp.spq(p = p, listw = listw, rho = rho) rho = 0.8 QY2 <- dgp.spq(p = p, listw = listw, rho = rho) dt = data.frame(QY1,QY2) m = 3 r = 1 formula <- ~ QY1 + QY2 control <- list(dtmaxknn = 10) qmap <- Q.map.test(formula = formula, data = dt, coor = coor, m = m, r = r, type ="combinations", control = control) ## ----------------------------------------------------------------------------- print(qmap[[1]]) ## ----------------------------------------------------------------------------- plot(qmap, ci=.6) ## ----------------------------------------------------------------------------- listw <- knearneigh(coor, k = 3) srq <- sp.runs.test(fx = fx, listw = listw) ## ----------------------------------------------------------------------------- print(srq) ## ----------------------------------------------------------------------------- plot(srq) ## ----------------------------------------------------------------------------- lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "less") ## ----------------------------------------------------------------------------- print(lsrq) ## ----------------------------------------------------------------------------- plot(lsrq, sig = 0.05) ## ----warning = FALSE---------------------------------------------------------- data("provinces_spain") listw <- spdep::poly2nb(as(provinces_spain,"Spatial"), queen = FALSE) provinces_spain$Mal2Fml <- factor(provinces_spain$Mal2Fml > 100) levels(provinces_spain$Mal2Fml) = c("men","woman") plot(provinces_spain["Mal2Fml"]) formula <- ~ Mal2Fml # Boots Version lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw, distr ="bootstrap", nsim = 199) plot(lsrq, sf = provinces_spain, sig = 0.10) ## ----bernoulli-scan, warning = FALSE------------------------------------------ formula <- ~ Mal2Fml scan.spain <- spqdep::scan.test(formula = formula, data = provinces_spain, case="men", nsim = 99, distr = "bernoulli") print(scan.spain) ## ----flexible-scan, warning = FALSE, collapse = TRUE-------------------------- listw <- spdep::poly2nb(provinces_spain, queen = FALSE) scan.spain <- spqdep::scan.test(formula = formula, data = provinces_spain, case="men", nsim = 99, windows = "flexible", listw = listw, nv = 6, distr = "bernoulli") print(scan.spain) ## ----multinomial-scan--------------------------------------------------------- data(FastFood.sf) formula <- ~ Type scan.fastfood <- scan.test(formula = formula, data = FastFood.sf, nsim = 99, distr = "multinomial", windows = "elliptic", nv = 50) print(scan.fastfood) ## ----------------------------------------------------------------------------- summary(scan.fastfood) ## ----warning = FALSE---------------------------------------------------------- plot(scan.spain, sf = provinces_spain) ## ----warning = FALSE---------------------------------------------------------- data(FastFood.sf) # plot(scan.fastfood, sf = FastFood.sf) ## ----warning = FALSE, collapse=TRUE------------------------------------------- coor <- st_coordinates(st_centroid(FastFood.sf)) listw <- spdep::knearneigh(coor, k = 4) formula <- ~ Type similarity <- similarity.test(formula = formula, data = FastFood.sf, listw = listw) print(similarity) ## ----warning = FALSE---------------------------------------------------------- provinces_spain$Older <- cut(provinces_spain$Older, breaks = c(-Inf,19,22.5,Inf)) levels(provinces_spain$Older) = c("low","middle","high") f1 <- ~ Older + Mal2Fml jc1 <- jc.test(formula = f1, data = provinces_spain, distr = "asymptotic", alternative = "greater", zero.policy = TRUE) summary(jc1) ## ----warning = FALSE---------------------------------------------------------- jc1 <- jc.test(formula = f1, data = provinces_spain, distr = "mc", alternative = "greater", zero.policy = TRUE) summary(jc1)