## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(subsampling) ## ----------------------------------------------------------------------------- set.seed(1) N <- 1e4 beta0 <- rep(-0.5, 7) d <- length(beta0) - 1 corr <- 0.5 sigmax <- matrix(corr, d, d) + diag(1-corr, d) X <- MASS::mvrnorm(N, rep(0, d), sigmax) colnames(X) <- paste("V", 1:ncol(X), sep = "") P <- 1 - 1 / (1 + exp(beta0[1] + X %*% beta0[-1])) Y <- rbinom(N, 1, P) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . head(data) ## ---- eval = FALSE------------------------------------------------------------ # ssp.glm( # formula, # data, # subset = NULL, # n.plt, # n.ssp, # family = "quasibinomial", # criterion = "optL", # sampling.method = "poisson", # likelihood = "weighted", # control = list(...), # contrasts = NULL, # ... # ) ## ----------------------------------------------------------------------------- n.plt <- 200 n.ssp <- 600 ssp.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = "quasibinomial", criterion = "optL", sampling.method = "withReplacement", likelihood = "weighted" ) summary(ssp.results) ## ----------------------------------------------------------------------------- ssp.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = "quasibinomial", criterion = "optA", sampling.method = "poisson", likelihood = "logOddsCorrection" ) summary(ssp.results) ## ----------------------------------------------------------------------------- names(ssp.results)