## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) run_mplus <- FALSE ## ----setup, message=FALSE----------------------------------------------------- library(tidySEM) library(lavaan) library(MplusAutomation) ## ----echo = TRUE, eval = FALSE------------------------------------------------ # df <- HolzingerSwineford1939 # names(df)[7:15] <- paste0(rep(c("vis", "tex", "spe"), each = 3), "_", rep(1:3, 3)) # df |> # subset(select = c("school", "vis_1", "vis_2", "vis_3", "tex_1", "tex_2", "tex_3", "spe_1", # "spe_2", "spe_3")) -> df ## ----echo = FALSE, eval = TRUE------------------------------------------------ df <- HolzingerSwineford1939 names(df)[7:15] <- paste0(rep(c("vis", "tex", "spe"), each = 3), "_", rep(1:3, 3)) subset(df, select = c("school", "vis_1", "vis_2", "vis_3", "tex_1", "tex_2", "tex_3", "spe_1", "spe_2", "spe_3")) -> df ## ----echo = TRUE, eval = FALSE------------------------------------------------ # df |> # tidy_sem() |> # measurement() -> model ## ----eval = TRUE, echo = FALSE------------------------------------------------ model <- measurement(tidy_sem(df)) ## ----eval = FALSE, echo = TRUE------------------------------------------------ # model |> # estimate_lavaan() -> fit_lav ## ----echo = FALSE, eval = TRUE------------------------------------------------ estimate_lavaan(model) -> fit_lav ## ----------------------------------------------------------------------------- table_results(fit_lav) ## ----------------------------------------------------------------------------- table_fit(fit_lav) ## ----echo = TRUE, eval = FALSE------------------------------------------------ # model |> # estimate_mx() -> fit_mx # table_results(fit_mx) # table_fit(fit_mx) ## ----eval = requireNamespace("OpenMx", quietly = TRUE), echo = FALSE---------- estimate_mx(model) -> fit_mx table_results(fit_mx) table_fit(fit_mx) ## ----eval = FALSE, echo = TRUE------------------------------------------------ # fit_mplus <- mplusModeler(mplusObject(VARIABLE = "grouping IS school (1 = GW 2 = Pas);", # MODEL = c("visual BY vis_1 vis_2 vis_3;", # "textual BY tex_1 tex_2 tex_3;", # "speed BY spe_1 spe_2 spe_3;"), # usevariables = names(df), # rdata = df), # modelout = "example.inp", # run = 1L) # table_results(fit_mplus) ## ----eval = run_mplus, echo = FALSE------------------------------------------- # # fit <- mplusModeler(mplusObject(VARIABLE = "grouping IS school (1 = GW 2 = Pas);", # # MODEL = c("visual BY x1 x2 x3;", # # "textual BY x4 x5 x6;", # # "speed BY x7 x8 x9;"), # # usevariables = c(paste0("x", 1:9), "school"), # # rdata = HolzingerSwineford1939), # # modelout = "example.inp", # # run = 1L) # # file.remove(list.files(pattern = "^example.+(inp|out|dat)$")) # #dput(fit$results$parameters) # #dput(fit, file = "mplusfit.R") ## ----eval = TRUE, echo = FALSE------------------------------------------------ # Read the results fit_mplus <- source("mplusfit.R") fit_mplus <- fit_mplus$value ## ----------------------------------------------------------------------------- table_results(fit_mplus) table_fit(fit_mplus)