## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(dplyr) library(tidypredict) library(parsnip) ## ----------------------------------------------------------------------------- library(dplyr) library(tidypredict) df <- mtcars %>% mutate(char_cyl = paste0("cyl", cyl)) %>% select(mpg, wt, char_cyl, am) model <- lm(mpg ~ wt + char_cyl, offset = am, data = df) ## ----------------------------------------------------------------------------- library(tidypredict) tidypredict_sql(model, dbplyr::simulate_mssql()) ## ----------------------------------------------------------------------------- df %>% tidypredict_to_column(model) %>% head(10) ## ----------------------------------------------------------------------------- tidypredict_sql_interval(model, dbplyr::simulate_mssql()) ## ----------------------------------------------------------------------------- df %>% tidypredict_to_column(model, add_interval = TRUE) %>% head(10) ## ----------------------------------------------------------------------------- pm <- parse_model(model) str(pm, 2) ## ----------------------------------------------------------------------------- tidypredict_fit(model) ## ----------------------------------------------------------------------------- tidypredict_interval(model) ## ----------------------------------------------------------------------------- tidypredict_test(model) ## ----------------------------------------------------------------------------- tidypredict_test(model, include_intervals = TRUE) ## ----------------------------------------------------------------------------- library(parsnip) parsnip_model <- linear_reg() %>% set_engine("lm") %>% fit(mpg ~ wt + cyl, offset = am, data = mtcars) tidypredict_fit(parsnip_model)