## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(trtswitch) library(dplyr, warn.conflicts = FALSE) library(ggplot2) ## ----data--------------------------------------------------------------------- head(immdef, 10) ## ----analysis----------------------------------------------------------------- data <- immdef %>% mutate(rx = 1-xoyrs/progyrs) fit1 <- rpsftm( data, time = "progyrs", event = "prog", treat = "imm", rx = "rx", censor_time = "censyrs", boot = FALSE) ## ----logrank------------------------------------------------------------------ fit1$logrank_pvalue ## ----psi---------------------------------------------------------------------- c(fit1$psi, fit1$psi_CI) ## ----Z(psi)------------------------------------------------------------------- psi_CI_width <- fit1$psi_CI[2] - fit1$psi_CI[1] ggplot(fit1$eval_z %>% filter(psi > fit1$psi_CI[1] - psi_CI_width*0.25 & psi < fit1$psi_CI[2] + psi_CI_width*0.25), aes(x=psi, y=Z)) + geom_line() + geom_hline(yintercept = c(0, -1.96, 1.96), linetype = 2) + scale_y_continuous(breaks = c(0, -1.96, 1.96)) + geom_vline(xintercept = c(fit1$psi, fit1$psi_CI), linetype = 2) + scale_x_continuous(breaks = round(c(fit1$psi, fit1$psi_CI), 3)) + ylab("log-rank Z") + theme(panel.grid.minor = element_blank()) ## ----km----------------------------------------------------------------------- ggplot(fit1$kmstar, aes(x=time, y=survival, group=treated, linetype=as.factor(treated))) + geom_step() + scale_linetype_discrete(name = "treated") + scale_y_continuous(limits = c(0,1)) ## ----hr----------------------------------------------------------------------- c(fit1$hr, fit1$hr_CI)