## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(fig.width = 6, fig.height = 5)

## ----egypt--------------------------------------------------------------------
library("univariateML")
head(egypt)
hist(egypt$age, main = "Mortality in Ancient Egypt", freq = FALSE)

## ----AIC----------------------------------------------------------------------
AIC(
  mlbetapr(egypt$age),
  mlexp(egypt$age),
  mlinvgamma(egypt$age),
  mlgamma(egypt$age),
  mllnorm(egypt$age),
  mlrayleigh(egypt$age),
  mlinvgauss(egypt$age),
  mlweibull(egypt$age),
  mlinvweibull(egypt$age),
  mllgamma(egypt$age)
)

## ----print--------------------------------------------------------------------
mlweibull(egypt$age)

## ----summary------------------------------------------------------------------
summary(mlweibull(egypt$age))

## ----model_select-------------------------------------------------------------
model_select(egypt$age, models = c("gamma", "weibull"))

## ----qqplots------------------------------------------------------------------
qqmlplot(egypt$age, mlweibull, datax = TRUE, main = "QQ Plot for Ancient Egypt")
# Can also use qqmlplot(mlweibull(egypt$age), datax = TRUE) directly.
qqmlpoints(egypt$age, mlgamma, datax = TRUE, col = "red")
qqmlline(egypt$age, mlweibull, datax = TRUE)
qqmlline(egypt$age, mlgamma, datax = TRUE, col = "red")

## ----plot_example, echo = TRUE------------------------------------------------
hist(egypt$age, main = "Mortality in Ancient Egypt", freq = FALSE)
lines(mlweibull(egypt$age), lwd = 2, lty = 2, ylim = c(0, 0.025))
lines(mlgamma(egypt$age), lwd = 2, col = "red")
rug(egypt$age)

## ----bootstrap_example, echo = TRUE-------------------------------------------
# Calculate two-sided 95% confidence intervals for the two Gumbel parameters.
bootstrapml(mlweibull(egypt$age)) # same as confint(mlweibull(egypt$age))
bootstrapml(mlgamma(egypt$age))

## ----bootstrap_example_mean, echo = TRUE--------------------------------------
# Calculate two-sided 90% confidence intervals for the mean of a Weibull.
bootstrapml(mlweibull(egypt$age),
  map = function(x) x[2] * gamma(1 + 1 / x[1]),
  probs = c(0.05, 0.95)
)
# Calculate two-sided 90% confidence intervals for the mean of a Gamma.
bootstrapml(mlgamma(egypt$age),
  map = function(x) x[1] / x[2],
  probs = c(0.05, 0.95)
)

## ----bootstrap_example_median, echo = TRUE------------------------------------
# Calculate two-sided 90% confidence intervals for the two Gumbel parameters.
bootstrapml(mlweibull(egypt$age),
  map = function(x) qweibull(0.5, x[1], x[2]),
  probs = c(0.05, 0.95)
)
bootstrapml(mlgamma(egypt$age),
  map = function(x) qgamma(0.5, x[1], x[2]),
  probs = c(0.05, 0.95)
)

## ----bootstrap_example_histogram, echo = TRUE---------------------------------
hist(
  bootstrapml(mlweibull(egypt$age),
    map = function(x) x[2] * gamma(1 + 1 / x[1]),
    reducer = identity
  ),
  main = "Bootstrap Samples of the Mean",
  xlab = "x",
  freq = FALSE
)

## ----random variables---------------------------------------------------------
set.seed(313)
rml(10, mlweibull(egypt$age))

## ----cumulative probability---------------------------------------------------
set.seed(313)
obj <- mlweibull(egypt$age)
q <- seq(0, max(egypt$age), length.out = 100)
plot(q, pml(q, obj), type = "l", ylab = "Cumulative Probability")
r <- rml(100, obj)
lines(ecdf(r))