## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = rlang::is_installed("vip") && rlang::is_installed("ggplot2") ) ## ----setup-------------------------------------------------------------------- library(waywiser) set.seed(1107) worldclim_training <- sample(nrow(worldclim_simulation) * 0.8) worldclim_testing <- worldclim_simulation[-worldclim_training, ] worldclim_training <- worldclim_simulation[worldclim_training, ] worldclim_model <- lm( response ~ bio2 + bio10 + bio13 + bio19, worldclim_training ) worldclim_testing$predictions <- predict( worldclim_model, worldclim_testing ) head(worldclim_testing) ## ----------------------------------------------------------------------------- ww_agreement_coefficient( worldclim_testing, truth = response, estimate = predictions ) ww_agreement_coefficient_vec( truth = worldclim_testing$response, estimate = worldclim_testing$predictions ) ## ----------------------------------------------------------------------------- ww_global_geary_c( worldclim_testing, truth = response, estimate = predictions ) ## ----------------------------------------------------------------------------- ww_global_geary_c( worldclim_testing, truth = response, estimate = predictions, wt = ww_build_weights(worldclim_testing) ) ww_global_geary_c( worldclim_testing, truth = response, estimate = predictions, wt = ww_build_weights ) ## ----------------------------------------------------------------------------- yardstick::metric_set( ww_agreement_coefficient, ww_global_geary_c )(worldclim_testing, truth = response, estimate = predictions) ## ----------------------------------------------------------------------------- ww_multi_scale( worldclim_testing, truth = response, estimate = predictions, metrics = list(ww_agreement_coefficient, yardstick::rmse), n = list(c(2, 4)) ) ## ----------------------------------------------------------------------------- grid <- sf::st_make_grid(worldclim_testing, n = c(2, 4)) ww_multi_scale( worldclim_testing, truth = response, estimate = predictions, metrics = list(ww_agreement_coefficient, yardstick::rmse), grids = list(grid) ) ## ----------------------------------------------------------------------------- worldclim_aoa <- ww_area_of_applicability( response ~ bio2 + bio10 + bio13 + bio19, worldclim_training, importance = vip::vi_model(worldclim_model) ) worldclim_aoa ## ----------------------------------------------------------------------------- worldclim_testing <- cbind( worldclim_testing, predict(worldclim_aoa, worldclim_testing) ) head(worldclim_testing) ## ----------------------------------------------------------------------------- library(ggplot2) ggplot(worldclim_testing, aes(di, abs(response - predictions), color = aoa)) + geom_point(alpha = 0.6)