## ---- echo = FALSE, message = FALSE------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 7, fig.align = "center") #options(tibble.print_min = 4L, tibble.print_max = 4L) library(ztpln) set.seed(123) ## ---- eval = T---------------------------------------------------------------- library(dplyr) library(tidyr) library(ggplot2) set.seed(123) rztpln(n = 10, mu = 0, sig = 1) rztpln(n = 10, mu = 6, sig = 4) ## ---- eval = T---------------------------------------------------------------- rztplnm(n = 100, mu = c(0, 4), sig = c(0.5, 0.5), theta = c(0.2, 0.8)) %>% log %>% hist(main = "", xlab = "k") ## ---- eval = T---------------------------------------------------------------- y <- rztpln(n = 100, mu = 2, sig = 5, type1 = TRUE) sum(dztpln(y, mu = 2, sig = 5, log = TRUE, type1 = TRUE)) sum(dztpln(y, mu = 2, sig = 5, log = TRUE, type1 = FALSE)) ## ---- eval = T---------------------------------------------------------------- y2 <- rztpln(n = 100, mu = 2, sig = 5, type1 = FALSE) sum(dztpln(y2, mu = 2, sig = 5, log = TRUE, type1 = TRUE)) sum(dztpln(y2, mu = 2, sig = 5, log = TRUE, type1 = FALSE)) ## ----------------------------------------------------------------------------- k1 <- 1 k <- 1000 dat <- tibble(type1 = dztpln(k1:k, mu = 1, sig = 2, type1 = TRUE), type2 = dztpln(k1:k, mu = 1, sig = 2, type1 = FALSE), x = k1:k) %>% pivot_longer(-x, names_to = "type", values_to = "y") ggplot(dat %>% dplyr::filter(x <= 10), aes(x = x, y = y, col = type)) + geom_point() + geom_line() + scale_y_log10() + xlab("k") + ylab("Likelihood") + theme_bw() ## ----------------------------------------------------------------------------- ggplot(dat, aes(x = x, y = y, col = type)) + geom_point() + geom_line() + scale_y_log10() + xlab("k") + ylab("Likelihood") + theme_bw()