%% Examples of a widetext macro for setting wide equations in the asmejour class. %% %% Copyright (c) 2022 John H. Lienhard. Use under the MIT license: https://ctan.org/license/mit %% %% %% USAGE: * \begin{widetext} ...wide material here... \end{widetext} %% OPTIONAL ARGUMENTS: %% * \begin{widetext[N] .. changes upper/lower separation of wide material from default 10pt to Npt %% * \begin{widetext}[][tbn]: t = top line only; b = bottom line only; n = no lines. BOTH arguments are REQUIRED, even if first is left empty. %% %% The widetext environment can only appear once per page. It clashes with floats and footnotes, as discussed herein. %% %% NB: the strip environment from cuted is incompatible with the [lineno] option to asmejour! %% \documentclass[nocopyright,nolists,pdf-a]{asmejour} %% This file's version and date are: \def\AJwidetextversion{1.01} \def\AJverdate{October 22, 2023} % \usepackage{asmewide} \usepackage{lipsum}% Latin filler text (lipsum generates a message about 'unused global options' - this can be ignored) % %%%% asmejour template inputs %%%% \JourName{Applied Mechanics} \date{Version~\AJwidetextversion. Revised \AJverdate} % \makeatletter \definecolor{JAMBlue}{rgb}{0.090, 0.574, 0.637} % 23, 147, 163 - similar to JAM masthead color \renewcommand\asmejour@barcolor{JAMBlue!80!white} \makeatother % %%%% % \begin{filecontents}{asme-wide-equations.bib} @online{lienhard2021, author = {Lienhard, V, John H.}, title = {Preprint Template for {ASME} Journal Papers: \texttt{asmejour.cls}}, organization = {Comprehensive \TeX\ Archive Network}, version = {{\versionno}}, year = {2021}, url = {https://ctan.org/pkg/asmejour}, urldate = {{\today}}, } @online{tolucsis1, author = {Sigitas Tolu\v{s}is}, year = {2021}, title = {The \texttt{cuted} package}, version = {2.0}, organization = {Comprehensive \TeX\ Archive Network}, url = {https://ctan.org/pkg/cuted}, urldate = {Dec. 30, 2021}, } @online{tolucsis2, author = {Sigitas Tolu\v{s}is}, year = {2021}, title = {The \texttt{sttools} collection}, version = {3.0}, organization = {Comprehensive \TeX\ Archive Network}, url = {https://ctan.org/pkg/sttools}, urldate = {Dec. 30, 2021}, } @book{stakgold, author = {Ivar Stakgold}, title = {Boundary Value Problems of Mathematical Physics}, year = {1967}, publisher = {Macmillan}, address = {New York}, } \end{filecontents} % \hypersetup{% pdfauthor={John H. Lienhard}, pdftitle={Wide Equations in asmejour.cls}, pdfkeywords={ASME journal paper, LaTeX template, wide equations, widetext}, pdfsubject = {Examples of setting wide equations in the asmejour LaTeX template}, pdfurl={https://ctan.org/pkg/asmejour}, pdflicenseurl={https://ctan.org/pkg/asmejour}, } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \SetAuthorBlock{John H.\ Lienhard V}{% Fellow of ASME \\ Rohsenow Kendall Heat Transfer Laboratory, \\ Department of Mechanical Engineering,\\ Massachusetts Institute of Technology, \\ Cambridge, MA 02139 USA \\ email: lienhard@mit.edu } \title{Wide Equations in asmejour.cls} \keywords{ASME journal, paper, {\upshape\LaTeX} template, wide equations, asmejour} \begin{abstract} This paper gives several examples of typesetting very wide equations with {\upshape\LaTeX} in the {\upshape\texttt{asmejour}} class~{\upshape\cite{lienhard2021}} using {\upshape\texttt{asmewide.sty}}. The style defines is a version of the {\upshape\texttt{widetext}} enviroment built on the 2021 release of {\upshape\texttt{cuted.sty}}~{\upshape\cite{tolucsis1}} from the {\upshape\texttt{sttools}} bundle~{\upshape\cite{tolucsis2}}, which is available from CTAN, \href{http://ctan.org}{ctan.org}. Significant hand-fitting around page breaks, floats, and footnotes is required to obtain good results. \textcolor{red}{Only the text in \textbf{red} in this document meant to be read---the rest is simply filler to aid in layout.} \end{abstract} \maketitle \section{Introduction} \lipsum[1-3] \section{Section} \lipsum[4] %%%%%%%%%%%%%%%%% begin two column figure %%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{figure*}[t] \begin{subfigure}[c]{0.495\textwidth} \centering{\includegraphics{zonal-harmonic2.pdf}}% \subcaption{\label{fig:zonal}} \end{subfigure} %%%%%%%% don't leave a break here \begin{subfigure}[c]{0.495\textwidth} \centering{\includegraphics{tesseral-harmonic.pdf}}% \subcaption{\label{fig:tesseral}}% \end{subfigure}% \caption{A figure with two subfigures: (a) Zonal harmonic $n=1, m=0$, (b) Tesseral harmonic $n=2, m=3$. See Appendix~\ref{sec:sph-har}.\label{fig:1}} \end{figure*} %%%%%%%%%%%%%%%%%%% end two column figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%% \lipsum[5-8] \section{Section} \lipsum[9-12] %%%%%%%%%%%%%%%%%%%% Example WT1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Single Wide Equation on the Page} \textcolor{red}{Equation~\eqref{eqn:WT1} is an equation with a matrix that is too large to fit into one column. A multiline math environment will not help because the equation cannot be broken into parts that each fit into a column.} \textcolor{red}{A two-column wide figure, Fig.~\ref{fig:1}, has floated from a previous page to the top of this page, but this figure does not interfere with the \texttt{widetext} environment (a single column figure would cause problems).} \begin{widetext} \begin{equation}\label{eqn:WT1} \mathbf{WT1:}\quad \mathfrak{W}(\bm{\Phi})= \begin{Vmatrix} \dfrac\varphi{(\varphi_1,\varepsilon_1)} & 0 & \hdotsfor{4} & 0 & \\[\jot] \dfrac{\varphi k_{21}}{(\varphi_2,\varepsilon_1)} & \dfrac\varphi{(\varphi_2,\varepsilon_2)} & 0 & \hdotsfor{3} & 0 \\[\jot] \dfrac{\varphi k_{31}}{(\varphi_3,\varepsilon_1)} &\dfrac{\varphi k_{32}}{(\varphi_3,\varepsilon_2)} & \dfrac\varphi{(\varphi_3,\varepsilon_3)}& 0 & \hdotsfor{2} & 0 \\[\jot] \vdots & & & \smash{\rotatebox{15}{$\ddots$}} & & & \vdots \\[\jot] \dfrac{\varphi k_{n-2\, 1}}{(\varphi_{n-2},\varepsilon_1)} & \dfrac{\varphi k_{n-2\, 2}}{(\varphi_{n-2},\varepsilon_2)} &\hdotsfor{1} & \dfrac{\varphi k_{n-2\,n-3}}{(\varphi_{n-2},\varepsilon_{n-3})} & \dfrac\varphi{(\varphi_{n-2},\varepsilon_{n-2})}& 0& 0 \\[\jot] \dfrac{\varphi k_{n-1\, 1}}{(\varphi_{n-1},\varepsilon_1)} & \dfrac{\varphi k_{n-1\, 2}}{(\varphi_{n-1},\varepsilon_2)} &\hdotsfor{2} & \dfrac{\varphi k_{n-1\,n-2}}{(\varphi_{n-1},\varepsilon_{n-2})}& \dfrac{\varphi}{(\varphi_{n-1},\varepsilon_{n-1})} & 0 \\[\jot] \dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)} & \dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)} & \hdotsfor{3} & \dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})} & \dfrac{\varphi}{(\varphi_n,\varepsilon_n)} \end{Vmatrix} \end{equation} \end{widetext} \lipsum[12-13] %%%%%%%%%%%%%%%%%%%% Examples WT2 & WT3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Two Wide Equations on the Page} \lipsum[14-16] \begin{widetext}% \begin{equation}\mathbf{WT2:} \int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \ne \frac{1}{\sqrt{\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy}} \end{equation} \textcolor{red}{In this case, we have a pair of wide equations on the same page. The \texttt{widetext} environment cannot be used twice on the same page! To resolve the conflict, we remain in single column mode between the two equations.} \textcolor{red}{This page also includes a single column float, Table~\ref{tab:2}. This float must come after the \texttt{widetext} environment. We use the \texttt{\textbackslash begin\{table\}[b]} option to force the table to the bottom of the column. The two column table, Table~\ref{tab:4}, floats to the top of the next page and creates no problems.} \begin{equation}\mathbf{WT3:} \int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \ne \frac{1}{\sqrt{\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy}} \end{equation} \end{widetext} \lipsum[17] %%%%%%%%%%%%%%% begin single column table %%%%%%%%%%%%%%%%%%%%%% \begin{table}[b] \caption{Table with more complicated columns}\label{tab:2}% \centering{% \begin{tabular}{!{\hspace*{0.5cm}} >{\raggedright\hangindent=1em} p{3cm} d{3} @{\hspace*{1cm}} d{3} !{\hspace*{0.5cm}}} \hline\hline \rule{0pt}{10pt} Experiment & \multicolumn{1}{c@{\hspace*{1cm}}}{$u$ [m/s]} & \multicolumn{1}{c!{\hspace*{0.5cm}}}{$T$ [\textdegree C]} \\[1pt] \hline The first experiment we ran this morning & 124.3 & 68.3 \rule{0pt}{10pt} \\ The second experiment we ran this morning & 82.50 & 103.46 \\ Our competitor's data & 72.321 & 141.384 \\[1pt] \hline\hline \end{tabular} } \end{table} %%%%%%%%%%%%%%%% end table %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% begin two column table %%%%%%%%%%%%%%%%%%%%%%%%% \begin{table*}[t] \caption{A table spanning two columns}\label{tab:4}% \centering{% \begin{tabular*}{0.8\textwidth}{@{\hspace*{1.5em}}@{\extracolsep{\fill}}ccc!{\hspace*{3.em}}ccc@{\hspace*{1.5em}}} \hline\hline \multicolumn{1}{@{\hspace*{1.5em}}c}{$x$\rule{0pt}{11pt}} & \multicolumn{1}{c}{$\textrm{erf}(x)$} & \multicolumn{1}{c!{\hspace*{3.em}}}{$\textrm{erfc}(x)$} & \multicolumn{1}{c}{$x$} & \multicolumn{1}{c}{$\textrm{erf}(x)$} & \multicolumn{1}{c@{\hspace*{1.5em}}}{$\textrm{erfc}(x)$} \\ \hline 0.00 & 0.00000 & 1.00000 & 1.10 & 0.88021 & 0.11980\rule{0pt}{11pt} \\ 0.05 & 0.05637 & 0.94363 & 1.20 & 0.91031 & 0.08969 \\ 0.10 & 0.11246 & 0.88754 & 1.30 & 0.93401 & 0.06599 \\ 0.15 & 0.16800 & 0.83200 & 1.40 & 0.95229 & 0.04771 \\ 0.20 & 0.22270 & 0.77730 & 1.50 & 0.96611 & 0.03389 \\ 0.30 & 0.32863 & 0.67137 & 1.60 & 0.97635 & 0.02365 \\ 0.40 & 0.42839 & 0.57161 & 1.70 & 0.98379 & 0.01621 \\ 0.50 & 0.52050 & 0.47950 & 1.80 & 0.98909 & 0.01091 \\ 0.60 & 0.60386 & 0.39614 & 1.82\makebox[0pt][l]{14} & 0.99000 & 0.01000 \\ 0.70 & 0.67780 & 0.32220 & 1.90 & 0.99279 & 0.00721 \\ 0.80 & 0.74210 & 0.25790 & 2.00 & 0.99532 & 0.00468 \\ 0.90 & 0.79691 & 0.20309 & 2.50 & 0.99959 & 0.00041 \\ 1.00 & 0.84270 & 0.15730 & 3.00 & 0.99998 & 0.00002 \\[2pt] \hline\hline \end{tabular*} } \end{table*} %%%%%%%%%%%%%%%% end table %%%%%%%%%%%%%%%%%%% \lipsum[18-25] \lipsum[27] %%%%%%%%%%%%%%%%%%%% Examples WT4 & WT5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Wide Equation Pair Split Across Page Break and Followed by Wide Equation} \textcolor{red}{Note that the upper rule is cleared after the first use in a \texttt{widetext} environment. This means that it will not show up at the top of the next page.} \textcolor{red}{The \texttt{\textbackslash newpage} command may be used between the equations to force the second one onto the next page, e.g., try removing the source code line \texttt{\textbackslash lipsum[27]} with and without \texttt{\textbackslash newpage}.} \lipsum[26-28] \begin{widetext}[5]% reducing \stripsep from the default 10pt to 5pt with the option [5], to make more room below the equation number \begin{equation}\mathbf{WT4:} \int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \ne \frac{1}{\sqrt{\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy}} \end{equation} %\newpage \begin{equation}\mathbf{WT5:} \int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \ne \frac{1}{\sqrt{\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2 \int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy}} \end{equation} \vskip 3pt % some extra space for cramped equation number \textcolor{red}{In this case, we again have a pair of wide equations on the same page, so we stay in single column mode until both are done\footnotemark. The single column table, Table~\ref{tab:3}, is forced to the bottom of the page with the \texttt{[b]} option.} \lipsum[32-33] \begin{equation}\mathbf{WT6:} \int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2] -2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \ne \frac{1}{\sqrt{\int_a^b\biggl\{g^2\int_a^bf^2+f^2 \int_a^b g^2-2fg\int_a^b fg\biggr\}\,dy}} \end{equation} \end{widetext} \footnotetext{\textcolor{red}{The code from \texttt{cuted.sty} doesn't play well with footnotes, so we put a \texttt{\textbackslash footnotemark} command inside the wide environment and place a separate \texttt{\textbackslash footnotetext\{..\}} command outside the wide environment.}}% \lipsum[34-37] %%%%%%%%%%%%%%%%%%% begin linewidth table %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{table}[b] \newcolumntype{C}{>{$}c<{$}} % math-mode version of "c" column type, from array package \caption{\label{tab:3}Table at full column width with columns in math mode} \centering{% \begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}CCCC@{\extracolsep{\fill}}} \hline\hline X_{z} & X_{c} & X_{c,m} & X_{c,2}\rule{0pt}{11pt}\\ 3.92069 & 5.70943 & 6.32429 & 7.08757\\[2pt] \varepsilon (T_1) & \varepsilon^i (T_1) & \varepsilon^i (T_m) & \alpha (T_1, T_2)\\ 0.7258 & 0.6237 & 0.6807 & 0.7964 \\[2pt] q_\textrm{gray} & q_\textrm{int, $T_1$} & q_\textrm{int, $T_m$} & q_\textrm{exact}\\ 400.2 & 462.1 & 371.0 & 371.8 \\[1pt] \hline\hline \end{tabular*} } \end{table} %%%%%%%%%%%%%%%%%%%% end linewidth table %%%%%%%%%%%%%%%%%%%%%%% \lipsum[40-54] \textcolor{red}{For eqn.~\eqref{eqn:WT7}, we drop the bottom line, keeping the top line and reducing the vertical space a bit: \texttt{\textbackslash begin\{widetext\}[8][t]}.} \begin{widetext}[8][t] \begin{equation}\label{eqn:WT7} \mathbf{WT7:}\quad \cfrac{1}{1+ \cfrac{1}{abcxyz+(ax^2-by^3+cz^4)(\alpha\chi^2-\beta\upsilon^3+\kappa\zeta^4)(ax^4-by^3+cz^2)(a^2x^2-by^3+c^2z^2)}} \end{equation} \end{widetext} \lipsum[50-63] \textcolor{red}{In this case, we drop the top line: \texttt{\textbackslash begin\{widetext\}[][b]}.} \vskip 80pt% <== an extra skip to push this widetext over the edge \begin{widetext}[][b] \begin{equation}\label{eqn:WT8} \mathbf{WT8:}\quad \mathfrak{W}(\bm{\Phi})= \begin{Vmatrix} \dfrac\varphi{(\varphi_1,\varepsilon_1)} & 0 & \hdotsfor{4} & 0 & \\[\jot] \dfrac{\varphi k_{21}}{(\varphi_2,\varepsilon_1)} & \dfrac\varphi{(\varphi_2,\varepsilon_2)} & 0 & \hdotsfor{3} & 0 \\[\jot] \dfrac{\varphi k_{31}}{(\varphi_3,\varepsilon_1)} &\dfrac{\varphi k_{32}}{(\varphi_3,\varepsilon_2)} & \dfrac\varphi{(\varphi_3,\varepsilon_3)}& 0 & \hdotsfor{2} & 0 \\[\jot] \vdots & & & \smash{\rotatebox{15}{$\ddots$}} & & & \vdots \\[\jot] \dfrac{\varphi k_{n-2\, 1}}{(\varphi_{n-2},\varepsilon_1)} & \dfrac{\varphi k_{n-2\, 2}}{(\varphi_{n-2},\varepsilon_2)} &\hdotsfor{1} & \dfrac{\varphi k_{n-2\,n-3}}{(\varphi_{n-2},\varepsilon_{n-3})} & \dfrac\varphi{(\varphi_{n-2},\varepsilon_{n-2})}& 0& 0 \\[\jot] \dfrac{\varphi k_{n-1\, 1}}{(\varphi_{n-1},\varepsilon_1)} & \dfrac{\varphi k_{n-1\, 2}}{(\varphi_{n-1},\varepsilon_2)} &\hdotsfor{2} & \dfrac{\varphi k_{n-1\,n-2}}{(\varphi_{n-1},\varepsilon_{n-2})}& \dfrac{\varphi}{(\varphi_{n-1},\varepsilon_{n-1})} & 0 \\[\jot] \dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)} & \dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)} & \hdotsfor{3} & \dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})} & \dfrac{\varphi}{(\varphi_n,\varepsilon_n)} \end{Vmatrix} \end{equation} \end{widetext} \lipsum[55-56] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \appendix \section{Spherical harmonics\label{sec:sph-har}} Without getting into the details, a regular function $f(\theta,\phi)$ on the surface of the unit sphere may be written \begin{equation} f(\theta,\phi) = \sum_{n=0}^\infty \sum_{m=-n}^n f_{m,n} Y_n^m(\theta,\phi) \end{equation} for $Y_n^m(\theta,\phi) = e^{i m\phi}P^{|m|}_n(\cos\theta)$, for $|m|