\documentclass[compose]{exam-n} \begin{document} \begin{question}{30} \comment{by Declan Diver} For a system of $N$ objects, each having mass $m_i$ and position vector $\mathbf{R}_i$ with respect to a fixed co-ordinate system, use the moment of inertia \[ I=\sum_{i=1}^N m_i R_i^2 \] to deduce the virial theorem in the forms \[ \ddot{I}=4E_k+2E_G=2E_k+2E \] where $E_k$ and $E_G$ are respectively the total kinetic and gravitational potential energy, and $E$ is the total energy of the system. \partmarks{8} Given the inequality \ifbigfont \begin{multline*} \left(\sum_{i=1}^N a_i^2\right) \left(\sum_{i=1}^N b_i^2\right) \\ \ge \left(\sum_{i=1}^N \mathbf{a}_i\cdot\mathbf{b}_i\right)^2 \\ + \left(\sum_{i=1}^N \mathbf{a}_i\times\mathbf{b}_i\right)^2 \end{multline*} \else \begin{equation*} \left(\sum_{i=1}^N a_i^2\right) \left(\sum_{i=1}^N b_i^2\right) \ge \left(\sum_{i=1}^N \mathbf{a}_i\cdot\mathbf{b}_i\right)^2 + \left(\sum_{i=1}^N \mathbf{a}_i\times\mathbf{b}_i\right)^2 \end{equation*} \fi for arbitrary vectors $\mathbf{a}_i$, $\mathbf{b}_i$, $i=1,\ldots,N$, deduce the following relationship for the $N$-body system \begin{equation*} \frac{1}{4}\dot{I}^2+J^2\le 2IE_k, \end{equation*} where $\mathbf{J}$ is the total angular momentum of the system. \partmarks{8} Assuming the system is isolated, use the virial theorem to deduce further the generalised Sundman inequality \begin{equation*} \frac{\dot{\sigma}}{\dot{\rho}}\ge 0, \end{equation*} in which $\rho^2=I$ and $\displaystyle\sigma=\rho\dot{\rho}^2+\frac{J^2}{\rho}-2\rho E $. \partmarks{8} Why does this inequality preclude the possibility of an $N$-fold collision for a system with finite angular momentum? \partmarks{6} \end{question} \end{document}