-- tkz_elements_functions_maths.lua -- date 2025/01/06 -- version 3.10 -- Copyright 2024 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. -- constant tkzphi = (1+math.sqrt(5))/2 tkzinvphi = (math.sqrt(5)-1)/2 tkzsqrtphi = math.sqrt(tkzphi) --------------------------------------------------------------------------- function round(num, idp) return topoint(string.format("%." .. (idp or 0) .. "f", num)) end function tkzround( num, idp ) local mult = 10 ^ ( idp or 0 ) return math.floor( num * mult + 0.5 ) / mult end function dot_product (a,b,c) return (b-a)..(c-a) end function Cramer33(a1,a2,a3,b1,b2,b3,c1,c2,c3) return a1*b2*c3+a3*b1*c2+a2*b3*c1-a3*b2*c1-a1*b3*c2-a2*b1*c3 end function Cramer22(a1,a2,b1,b2) return a1*b2-a2*b1 end function aligned(m, a, b) local z z = (b - a) / (m - b) if math.abs(z.im) < tkz_epsilon then return true else return false end end function islinear(z1, z2, z3) local dp dp = (z2 - z1) ^ (z3 - z1) if math.abs(dp) < tkz_epsilon then return true else return false end end is_linear = islinear function isortho (z1,z2,z3) local dp dp = (z2-z1) .. (z3-z1) if math.abs(dp) < tkz_epsilon then return true else return false end end is_ortho = isortho function parabola (a,b,c) local xa,xb,xc,ya,yb,yc xa = a.re ya = a.im xb = b.re yb = b.im xc = c.re yc = c.im D = (xa-xb)*(xa-xc)*(xb-xc) A = (xc*(yb-ya) + xb*(ya-yc)+xa*(yc-yb))/D B = (xc*xc*(ya-yb)+xb*xb*(yc-ya)+xa*xa*(yb-yc))/D C = (xb*xc*(xb-xc)*ya + xc*xa*(xc-xa)*yb +xa*xb*(xa-xb)*yc)/D return A,B,C end function value (v) return scale * v end function real (v) return v/scale end function get_angle (a,b,c) return angle_normalize_(get_angle_( a,b,c )) end function get_angle_( a,b,c ) return point.arg ((c-a)/(b-a)) end function angle_normalize (a) return angle_normalize_ (a) end function angle_normalize_ (a) while a < 0 do a = a + 2*math.pi end while a >= 2*math.pi do a = a - 2*math.pi end return a end function barycenter (...) return barycenter_ (...) end function swap(a,b) local t=a a=b b=t return a,b end -- real func function is_integer(x) return x == math.round(x) end function near_integer(x) local i,r = math.modf (x) if is_zero (r) then return true end return false end function residue (x) dp,ip = math.modf (x) return ip end function is_zero (x) return math.abs(x) < tkz_epsilon end function set_zero (x) if is_zero (x) then x=0 end return x end function math.round(num) return math.floor(num + 0.5) end function checknumber(x) if type(x) == 'table' then return x else if string.find(x, "e") then return string.format("%.12f",x) else return x end end end function decimal (x) if string.find(x, "e") then return string.format("%.12f",x) else return x end end function format_number(number, dcpl) if type(number) == 'table' then return number else local format_string = string.format("%%.%df", dcpl) return string.format(format_string, number) end end function get_sign(number) local sgn if math.abs(number) < tkz_epsilon then sgn = "" elseif number > 0 then sgn = "+" else sgn = "-" end return sgn end function solve_quadratic(a, b, c) local root1, root2,delta ,sqrtdelta if (type(a) == "number") and (type(b) == "number") and (type(c) == "number") then delta = b*b - 4*a*c if delta < 0 then root1, root2 = solve_cx_quadratic(a, b, c) elseif delta == 0 then root1 = -b / (2*a) root2 = -b / (2*a) else sqrtdelta = math.sqrt(delta) root1 = (-b + sqrtdelta) / (2*a) root2 = (-b - sqrtdelta) / (2*a) end else root1, root2 = solve_cx_quadratic(a, b, c) end return root1, root2 -- Two real roots end function solve_cx_quadratic(a, b, c) local d = b*b - 4*a*c local dcx = point.sqrt(d) local root1 = (- b + dcx) / (2*a) local root2 = (- b - dcx) / (2*a) return root1, root2 end -- function solve_cubic(a, b, c, d) -- local p = (3*a*c - b*b)/(3*a*a) -- local q = (2*b*b*b - 9*a*b*c + 27*a*a*d)/(27*a*a*a) -- local delta = q*q+4*p*p*p/27 -- local offset = - b / (3*a) -- if delta > tkz_epsilon then -- local r = (- q + math.sqrt(delta))/2 -- local s = (- q - math.sqrt(delta))/2 -- if r > 0 then -- u = r^(1/3) -- else -- u = -(-r)^(1/3) -- end -- if s > 0 then -- v = s^(1/3) -- else -- v = -(-s)^(1/3) -- end -- return u + v + offset -- end -- if delta < 0 then -- local u = 2 * math.sqrt( - p / 3) -- local v = math.acos(((3*q)/(2*p)) * math.sqrt( -3 / p)) / 3 -- local x1 = u * math.cos(v) + offset -- local x2 = u * math.cos(v + 2 * math.pi/3) + offset -- local x3 = u * math.cos(v - 2 * math.pi/3) + offset -- return {x1,x2,x3} -- end -- if delta == 0 then -- return {3*q/p+offset,-3*q/(2*p)+offset,-3*q/(2*p)+offset} -- end -- end function display_real (r) local format_string,format_string if r == nil then return "" else if near_integer ( r ) then r = math.round ( r ) format_string = string.format("%%.%df", 0) else format_string = string.format("%%.%df", tkz_dc) end local st = string.format(format_string , r) return st end end function display_imag (r) local sgn sgn = get_sign (r) r = math.abs(r) if math.abs(r-1) < tkz_epsilon then r = nil elseif near_integer ( r ) then r = math.abs(math.round(r)) end st = display_real (r) return sgn,st end function display (z) if (type(z) == "number") then return display_real (z) else local real, imag real = z.re imag = z.im if is_zero ( imag ) then return display_real (real) else str = display_real (real) sgni,sti = display_imag (imag) if str == "0" then str="" sgni = "" end local st = str ..sgni..sti.."i" return st end end end