-- tkz_elements_matrices.lua -- date 2025/01/06 -- version 3.10 -- Copyright 2024 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. -- ---------------------------------------------------------------------------- matrix={} function matrix: new (value) local type = 'matrix' local rows = #value local cols = #value[1] local set = value local det = determinant(value) local o = {set = set, rows = rows, cols = cols, det = det, type = type } setmetatable(o, self) self.__index = self return o end function matrix.__mul(m1,m2) if getmetatable(m1) ~= matrix then return k_mul_matrix(m1, m2) end if getmetatable(m2) ~= matrix then return k_mul_matrix(m2, m1) end return mul_matrix(m1,m2) end function matrix.__add(m1,m2) return add_matrix(m1,m2) end function matrix.__sub(m1,m2) return add_matrix(m1,k_mul_matrix(-1, m2)) end function matrix.__pow(m, num) -- Handle transpose (when num is 'T') if num == 'T' then return transposeMatrix(m) end -- Handle exponentiation by 0 (returns the identity matrix) if num == 0 then return matrix:new(#m, "I") -- Identity matrix end -- Handle negative exponents (invert the matrix) if num < 0 then local inv_matrix, err = inv_matrix(m) if not inv_matrix then return nil, err -- Return nil and the error if matrix is non-invertible end num = -num -- Make exponent positive for easier handling m = inv_matrix -- Now use the inverted matrix end -- Now handle the positive exponentiation local result = m for i = 2, num do result = mul_matrix(result, m) -- Repeated multiplication end return result end function matrix.__tostring( A ) local mt = (A.type=='matrix' and A.set or A) local k = {} for i = 1,#mt do local n = {} for j = 1,#mt[1] do n[j] = display(mt[i][j]) end k[i] = table.concat(n, " ") end return table.concat(k) end function matrix.__eq( A , B ) local mt1 = (A.type=='matrix' and A.set or A) local mt2 = (B.type=='matrix' and B.set or B) if A.type ~= B.type then return false end if #mt1 ~= #mt2 or #mt1[1] ~= #mt2[1] then return false end for i = 1,#mt1 do for j = 1,#mt1[1] do if mt1[i][j] ~= mt2[i][j] then return false end end end return true end function matrix : square(n,...) local m = {} local t = table.pack(...) if n*n == #t then for i = 1, n do m[i] = {} for j = 1, n do m[i][j] = t[n*(i-1)+j] end end return matrix : new (m) else return nil end end function matrix: vector (...) local m = {} local t = table.pack(...) for i = 1, #t do m[i] = {} m[i][1] = t[i] end return matrix : new (m) end function matrix : homogenization () return homogenization_ (self) end function matrix : htm_apply (...) local obj,nb,t local tp = table.pack(...) obj = tp[1] nb = tp.n if nb == 1 then if obj.type == "point" then return htm_apply_ ( self,obj ) elseif obj.type == "line" then return htm_apply_L_ (self,obj) elseif obj.type == "triangle" then return htm_apply_T_ (self,obj) elseif obj.type == "circle" then return htm_apply_C (self,obj) elseif obj.type == "square" or obj.type == "rectangle" or obj.type == "quadrilateral" or obj.type == "parallelogram" then return htm_apply_Q (self,obj) end else t = {} for i=1,tp.n do table.insert(t , htm_apply_ ( self , tp[i])) end return table.unpack ( t ) end end function matrix: k_mul (n) return k_mul_matrix(n, self) end function matrix : get (i,j) return get_element_( self,i,j ) end function matrix: inverse () return inv_matrix (self) end function matrix: adjugate () return adjugate_ (self) end function matrix: transpose () return transposeMatrix (self) end function matrix: is_diagonal () return isDiagonal_ (self) end function matrix: is_orthogonal () return isOrthogonal_ (self) end function matrix: diagonalize () -- return two matrices D and P return diagonalize_ (self) end function matrix: print (style,fmt) local style = (style or 'bmatrix') local fmt = (fmt or 0) return print_matrix (self,style,fmt) end function matrix: identity (n) return id_matrix (n) end ------------------------- -- homogeneous transformation matrix function matrix : htm (phi,a,b,sx,sy) local tx = (a or 0) local ty = (b or 0) local sx = (sx or 1) local sy = (sy or 1) local phi = (phi or 0) return matrix : square (3,sx*math.cos(phi),-math.sin(phi),tx,math.sin(phi),sy*math.cos(phi),ty,0,0,1) end ------------------------- function matrix: is_orthogonal () return isOrthogonal_ (self) end return matrix