-- tkz_elements_point.lua -- date 2025/01/06 -- version 3.10 -- Copyright 2024 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. -- point.lua require 'tkz_elements_class' point = class(function(p,re,im) if type(re) == 'number' then p.re = re p.im = im else p.re = re.re p.im = re.im end p.type = 'point' p.argument = math.atan(p.im, p.re) p.modulus = math.sqrt(p.re * p.re + p.im * p.im) p.mtx = matrix : new {{p.re},{p.im}} end) local sqrt = math.sqrt local cos = math.cos local sin = math.sin local exp = math.exp local atan = math.atan local min = math.min local max = math.max local abs = math.abs local function topoint (z1) if (type(z1) == "number") then return point(z1,0) else return z1 end end local function check(z1,z2) if type(z1) == 'number' then return point(z1,0),z2 elseif type(z2) == 'number' then return z1,point(z2,0) else return z1,z2 end end -- ------------------------------------------------------------------- -- metamethods -- ------------------------------------------------------------------- -- redefine arithmetic operators! function point.__add(z1,z2) local c1,c2 = check(z1,z2) return point(c1.re + c2.re, c1.im + c2.im) end function point.__sub(z1,z2) local c1,c2 = check(z1,z2) return point(c1.re - c2.re, c1.im - c2.im) end function point.__unm(z) local z = topoint(z) return point(-z.re, -z.im) end function point.__mul(z1,z2) local c1,c2 = check(z1,z2) return point(c1.re*c2.re - c1.im*c2.im, c1.im*c2.re + c1.re*c2.im) end -- dot product is '..' (a+ib) (c-id) = ac+bd + i(bc-ad) function point.__concat(z1,z2) local z z = z1 * point.conj(z2) return z.re end -- determinant is '^' (a-ib) (c+id) = ac+bd + i(ad - bc) function point.__pow(z1,z2) local z z = point.conj(z1) * z2 return z.im end function point.__div(x,y) local xx = topoint(x); local yy = topoint(y) return point( (xx.re * yy.re + xx.im * yy.im) / (yy.re * yy.re + yy.im * yy.im), (xx.im * yy.re - xx.re * yy.im) / (yy.re * yy.re + yy.im * yy.im) ) end function point.__tostring(z) local real = z.re local imag = z.im if (real == 0) then if (imag == 0) then return "0" else if (imag == 1) then return "" .. "i" else if (imag == -1) then return "" .. "-i" else local imag = string.format( "%."..tkz_dc.."f",imag) return "" .. imag .. "i" end end end else if (imag > 0) then if (imag ==1) then if is_integer (real) then real = math.round(real) else real = string.format( "%."..tkz_dc.."f",real) end return "" .. real .. "+" .. "i" else if is_integer (real) then real = math.round(real) else real = string.format( "%."..tkz_dc.."f",real) end imag = string.format( "%."..tkz_dc.."f",imag) return "" .. real .. "+" .. imag .. "i" end elseif (imag < 0) then if (imag == -1) then if is_integer (real) then real = math.round(real) else real = string.format( "%."..tkz_dc.."f",real) end imag = string.format( "%."..tkz_dc.."f",imag) return "" .. real .. "-" .. "i" else if is_integer (real) then real = math.round(real) else real = string.format( "%."..tkz_dc.."f",real) end imag = string.format( "%."..tkz_dc.."f",imag) return "" .. real .. imag .. "i" end else if is_integer (real) then real = math.round(real) else real = string.format( "%."..tkz_dc.."f",real) end return "" .. real end end end function point.__tonumber(z) if (z.im == 0) then return z.re else return nil end end function point.__eq(z1,z2) return z1.re==z2.re and z1.im==z2.im end -- ------------------------------------------------------------------- local function pyth(a, b) if a == 0 and b == 0 then return 0 end a, b = abs(a), abs(b) a, b = max(a,b), min(a,b) return a * sqrt(1 + (b / a)^2) end function point.conj(z) local cx = topoint(z) return point(cx.re,-cx.im) end function point.mod(z) local cx = topoint(z) local function sqr(x) return x*x end return pyth (cx.re,cx.im) end function point.abs (z) local cx = topoint(z) local function sqr(x) return x*x end return sqrt(sqr(cx.re) + sqr(cx.im)) end function point.norm (z) local cx = topoint(z) local function sqr(x) return x*x end return (sqr(cx.re) + sqr(cx.im)) end function point.power (z,n) if type(z) == number then return z^n else local m = (z.modulus)^n local a = angle_normalize((z.argument)*n) return scale * polar_ (m,a) end end function point.arg (z) cx = topoint(z) return math.atan(cx.im, cx.re) end function point.get(z) return z.re, z.im end function point.sqrt(z) local cx = topoint(z) local len = math.sqrt( (cx.re)^2+(cx.im)^2 ) local sign = (cx.im < 0 and -1 ) or 1 return point(math.sqrt((cx.re+len)/2), sign*math.sqrt((len-cx.re)/2) ) end -- methods --- function point: new ( a,b ) return scale * point (a,b ) end function point: polar ( radius, phi ) return point: new (radius * math.cos(phi), radius * math.sin(phi)) end function point: polar_deg ( radius, phi ) return scale * polar_ ( radius, phi * math.pi/180 ) end function point: north(d) local d = d or 1 return self+ polar_ ( d , math.pi/2 ) end function point: south(d) local d = d or 1 return self + polar_ ( d , 3 * math.pi/2 ) end function point: east(d) local d = d or 1 return self+ polar_( d , 0 ) end function point: west(d) local d = d or 1 return self + polar_ ( d , math.pi ) end -- ---------------------------------------------------------------- -- transformations -- ---------------------------------------------------------------- -- function point: symmetry(pt) -- return symmetry_ (self ,pt) -- end function point:symmetry(...) local tp = table.pack(...) -- Pack arguments into a table local nb = tp.n -- Number of arguments local obj = tp[1] -- The first object in the arguments if nb == 1 then -- If there's only one argument if obj.type == "point" then return symmetry_(self, obj) -- Apply symmetry on the point elseif obj.type == "line" then return line:new(set_symmetry_(self, obj.pa, obj.pb)) -- Create a new line elseif obj.type == "circle" then return circle:new(set_symmetry_(self, obj.center, obj.through)) -- Create a new circle else return triangle:new(set_symmetry(self, obj.pa, obj.pb, obj.pc)) -- Create a new triangle end else -- If there are multiple arguments local results = {} -- Initialize a table to store results for i = 1, nb do table.insert(results, symmetry_(self, tp[i])) -- Apply symmetry on each object end return table.unpack(results) -- Return the results as separate values end end function point: set_symmetry (...) return set_symmetry_ ( self,... ) end function point: rotation_pt(angle , pt) return rotation_(self,angle,pt) end function point:set_rotation (angle,...) return set_rotation_ ( self,angle,... ) end function point:rotation(angle, ...) local tp = table.pack(...) -- Pack arguments into a table local nb = tp.n -- Number of arguments local obj = tp[1] -- The first object in the arguments if nb == 1 then -- If there's only one argument if obj.type == "point" then return rotation_(self, angle, obj) -- Rotate the point elseif obj.type == "line" then return line:new(set_rotation_(self, angle, obj.pa, obj.pb)) -- Rotate the line elseif obj.type == "triangle" then return triangle:new(set_rotation_(self, angle, obj.pa, obj.pb, obj.pc)) -- Rotate the triangle elseif obj.type == "circle" then return circle:new(set_rotation_(self, angle, obj.center, obj.through)) -- Rotate the circle else -- For other shapes like square return square:new(set_rotation_(self, angle, obj.pa, obj.pb, obj.pc, obj.pd)) -- Rotate the square end else -- If there are multiple arguments local results = {} -- Initialize a table to store results for i = 1, nb do table.insert(results, rotation_(self, angle, tp[i])) -- Rotate each object end return table.unpack(results) -- Return the results as separate values end end function point:homothety(coeff, ...) local tp = table.pack(...) -- Pack arguments into a table local nb = tp.n -- Number of arguments local obj = tp[1] -- The first object in the arguments local t = {} -- Initialize a table to store results if nb == 1 then -- If there's only one argument if obj.type == "point" then return homothety_(self, coeff, obj) -- Apply homothety to the point elseif obj.type == "line" then return line:new(set_homothety_(self, coeff, obj.pa, obj.pb)) -- Apply homothety to the line elseif obj.type == "triangle" then return triangle:new(set_homothety_(self, coeff, obj.pa, obj.pb, obj.pc)) -- Apply homothety to the triangle elseif obj.type == "circle" then return circle:new(set_homothety_(self, coeff, obj.center, obj.through)) -- Apply homothety to the circle else -- For other shapes like square return square:new(set_homothety_(self, coeff, obj.pa, obj.pb, obj.pc, obj.pd)) -- Apply homothety to the square end else -- If there are multiple arguments for i = 1, nb do table.insert(t, homothety_(self, coeff, tp[i])) -- Apply homothety to each object end return table.unpack(t) -- Return the results as separate values end end function point: normalize() local d = point.abs(self) return point(self.re/d,self.im/d) end function point:orthogonal(d) local m if d == nil then -- If no scaling factor d is provided, return the point rotated 90 degrees counterclockwise return point(-self.im, self.re) else -- If a scaling factor d is provided, scale the orthogonal point m = point.mod(self) -- Get the modulus (magnitude) of the current point return point(-self.im * d / m, self.re * d / m) -- Return the scaled orthogonal point end end function point : at (z) return point(self.re+z.re,self.im+z.im) end function point : print () tex.print(tostring(self)) end