
NLFFI
A new SML/NJ Foreign-Function Interface

(for SML/NJ version 110.46 and later)

User Manual

Matthias Blume
Toyota Technological Institute at Chicago

October 31, 2019

Contents

1 Introduction 2

2 The C Library 2

3 Translation conventions 2

3.1 External variables . 2

3.2 Functions . 3

3.3 Type definitions (typedef) . 6

3.4 struct and union . 7

3.5 Enumerations (enum) . 10

1

1 Introduction

Introduce...

2 The C Library

The C library...

3 Translation conventions

The ml-nlffigen tool generates one ML structure for each exported C definition. In particular, there is one structure
per external variable, function, typedef, struct, union, and enum. Each generated ML structure contains the ML
type and values necessary to manipulate the corresponding C item.

3.1 External variables

An external C variable v of type tC is represented by an ML structure G v. This structure always contains a type t
encoding tC and a value obj’ providing (“light-weight”) access to the memory location that v stands for in C. If tC is
complete, then G v will also contain a value obj (the “heavy-weight” equivalent of obj’) as well as value typ holding
run-time type information corresponding to tC (and t).

Details

type t is the type to be substituted for τ in (τ, ζ) C.obj to yield the correct type for ML values representing C
memory objects of type tC (i.e., v’s type). (This assumes a properly instantiated ζ based on whether or not the
corresponding object was declared const.)

!val typ is the run-time type information corresponding to type t. The ML type of typ is t C.T.typ. This value
is not present if tC is incomplete.

!val obj is a function that returns the ML-side representative of the C object (i.e., the memory location) referred to
by v. Depending on whether or not v was declared const, the type of obj is either unit -> (t, C.ro)
C.obj or unit -> (t, C.rw) C.obj. The result of obj() is “heavy-weight,” i.e., it implicitly carries
run-time type information. This value is not present if tC is incomplete.

val obj’ is analogous to val obj, the only difference being that its result is “light-weight,” i.e., without run-time
type information. The type of val obj’ is either unit -> (t, C.ro) C.obj or unit -> (t, C.rw)
C.obj.

(Elements that are subject to omission due to incompleteness of types are marked with an exclamation mark(!).)

2

Examples

C declaration signature of ML-side representation

extern int i;

structure G_i : sig
type t = C.sint
val typ : t C.T.typ
val obj : unit -> (t, C.rw) C.obj
val obj’ : unit -> (t, C.rw) C.obj’

end

extern const double d;

structure G_d : sig
type t = C.double
val typ : t C.T.typ
val obj : unit -> (t, C.ro) C.obj
val obj’ : unit -> (t, C.ro) C.obj’

end

extern struct str s1;
/* str complete */

structure G_s1 : sig
type t = (S_str.tag C.su, rw) C.obj C.ptr
val typ : t C.T.typ
val obj : unit -> (t, C.rw) C.obj
val obj’ : unit -> (t, C.rw) C.obj’

end

extern struct istr s2;
/* istr incomplete */

structure G_s2 : sig
type t = (ST_istr.tag C.su, rw) C.obj C.ptr
val obj’ : unit -> (t, C.rw) C.obj’

end

3.2 Functions

An external C function f is represented by an ML structure F f . Each such structure always contains at last three values:
typ, fptr, and f’. Variable typ holds run-time type information regarding function pointers that share f ’s prototype.
The most important part of this information is the code that implements native C calling conventions for these functions.
Variable fptr provides access to a C pointer to f . And f’ is an ML function that dispatches a call of f (through fptr),
using “light-weight” types for arguments and results. If the result type of f is complete, then F f will also contain a
function f, using “heavy-weight” argument- and result-types.

Details

val typ holds run-time type information for pointers to functions of the same prototype. The ML type of typ is (A
-> B) C.fptr C.T.typ where A and B are types encoding f ’s argument list and result type, respectively. A
description of A and B is given below.

val fptr is a function that returns the (heavy-weight) function pointer to f . The type of fptr is unit -> (A ->
B) C.fptr. The encodings of argument- and result types in A and B is the same as the one used for typ (see
below). Notice that although fptr is a heavy-weight value carrying run-time type information, pointer arguments
within A or B still use the light-weight version!

!val f is an ML function that dispatches a call to f via fptr. For convenience, f has built-in conversions for argu-
ments (from ML to C) and the result (from C to ML). For example, if f has an argument of type double, then f
will take an argument of type MLRep.Real.real in its place and implicitly convert it to its C equivalent using
C.Cvt.c double. Similarly, if f returns an unsigned int, then f has a result type of MLRep.Unsigned.word.
This is done for all types that have a conversion function in C.Cvt. Pointer values (as well as the object argument
used for struct- or union-return values) are taken and returned in their heavy-weight versions. Function f will
not be generated if the return type of f is incomplete.

3

val f’ is the light-weight equivalent to f. a light-weight function. The main difference is that pointer- and object-
values are passed and returned in their light-weight versions.

Type encoding rules for (A -> B) C.fptr

A C function f ’s prototype is encoded as an ML type A -> B. Calls of f from ML take an argument of type A and
produce a result of type B.

• Type A is constructed from a sequence 〈T1, . . . , Tk〉 of types. If that sequence is empty, then A = unit; if the
sequence has only one element T1, then A = T1. Otherwise A is a tuple type T1 * . . . * Tk.

• If f ’s result is neither a struct nor a union, then T1 encodes the type of f ’s first argument, T2 that of the second,
T3 that of the third, and so on.

• If f ’s result is some struct or some union, then T1 will be (τ C.su, C.rw) C.obj’ with τ instantiated
to the appropriate struct- or union-tag type. Moreover, we then also have B = T1. T2 encodes the type of f ’s
first argument, T3 that of the second. (In general, Ti+1 will encode the type of the ith argument of f in this case.)

• The encoding of the ith argument of f (Ti or Ti+1 depending on f ’s return type) is the light-weight ML equivalent
of the C type of that argument.

• An argument of C struct- or union-type corresponds to (τ C.su, C.ro) C.obj’ with τ instantiated to
the appropriate tag type.

• If f ’s result type is void, then B = unit. If the result type is not a struct- or union-type, then B is the
light-weight ML encoding of that type. Otherwise B = T1 (see above).

4

Examples

C declaration signature of ML-side representation

void f1 (void);

structure F_f1 : sig
val typ : (unit -> unit) C.fptr C.T.typ
val fptr : unit -> (unit -> unit) C.fptr
val f : unit -> unit
val f’ : unit -> unit

end

int f2 (void);

structure F_f2 : sig
val typ : (C.sint -> unit) C.fptr C.T.typ
val fptr : unit -> (C.sint -> unit) C.fptr
val f : MLRep.Signed.int -> unit
val f’ : MLRep.Signed.int -> unit

end

void f3 (int);

structure F_f3 : sig
val typ : (unit -> C.sint) C.fptr C.T.typ
val fptr : unit -> (unit -> C.sint) C.fptr
val f : unit -> MLRep.Signed.int
val f’ : unit -> MLRep.Signed.int

end

void f4 (double, struct s*);

structure F_f4 : sig
val typ : (C.double *

(ST_s.tag C.su, C.rw) C.obj C.ptr’
-> unit)

C.fptr C.T.typ
val fptr : unit -> (C.double *

(ST_s.tag C.su, C.rw) C.obj C.ptr’
-> unit) C.fptr

val f : MLRep.Real.real *
(ST_s.tag C.su, C.rw) C.obj C.ptr
-> unit

val f’ : MLRep.Real.real *
(ST_s.tag C.su, C.rw) C.obj C.ptr’
-> unit

end

5

C declaration signature of ML-side representation

struct s *f5 (float);
/* s incomplete */

structure F_f5 : sig
val typ : (C.float

-> (ST_s.tag C.su, C.rw) C.obj C.ptr’)
C.fptr C.T.typ

val fptr : unit -> (C.float
-> (ST_s.tag C.su, C.rw) C.obj C.ptr’)

C.fptr
val f’ : MLRep.Real.real ->

(ST_s.tag C.su, C.rw) C.obj C.ptr’
end

struct t *f6 (float);
/* t complete */

structure F_f6 : sig
val typ : (C.float

-> (S_t.tag C.su, C.rw) C.obj C.ptr’)
C.fptr C.T.typ

val fptr : unit -> (C.float
-> (S_t.tag C.su, C.rw) C.obj C.ptr’)

C.fptr
val f : MLRep.Real.real ->

(S_t.tag C.su, C.rw) C.obj C.ptr
val f’ : MLRep.Real.real ->

(S_t.tag C.su, C.rw) C.obj C.ptr’
end

struct t f7 (int, double);
/* t complete */

structure F_f7 : sig
val typ : ((S_t.tag C.su, C.rw) C.obj’ *

C.sint * C.double
-> (S_t.tag C.su, C.rw) C.obj’)

C.fptr C.T.typ
val fptr : unit -> ((S_t.tag C.su, C.rw) C.obj’ *

C.sint * C.double
-> (S_t.tag C.su, C.rw) C.obj’)

C.fptr
val f : (S_t.tag C.su, C.rw) C.obj *

MLRep.Signed.int *
MLRep.Real.real
-> (S_t.tag C.su, C.rw) C.obj

val f’ : (S_t.tag C.su, C.rw) C.obj’ *
MLRep.Signed.int *
MLRep.Real.real
-> (S_t.tag C.su, C.rw) C.obj’

end

3.3 Type definitions (typedef)

In C a typedef declaration associates a type name t with a type tC . On the ML side, t is represented by an ML structure
T t. This structure contains a type abbreviation t for the ML encoding of tC and, provided tC is not incomplete, a value
typ of type t C.T.typ with run-time type information regarding tC .

6

Examples

C declaration signature of ML-side representation

typedef int t1;

structure T_t1 : sig
type t = C.sint
val typ : t C.T.typ

end

typedef struct s t2;
/* s incomplete */

structure T_t2 : sig
type t = ST_s.tag C.su

end

typedef struct s *t3;
/* s incomplete */

structure T_t3 : sig
type t = (ST_s.tag C.su, C.rw) C.obj C.ptr

end

typedef struct t t4;
/* t complete */

structure T_t4 : sig
type t = ST_t.tag C.su
val typ : t T.typ

end

3.4 struct and union

The type identity of a named C struct (or union) is provided by a unique ML tag type. There is a 1-1 correspondence
between C tag names t for structs on one side and ML tag types st on the other. An analogous correspondence exists
between C tag names t for unions and ML tag types ut. Notice that these correspondences are independent of the actual
declaration of the C struct or union in question.

A C type of the form struct t is represented in ML as st C.su, a type of the form union t as ut C.su. For
example, this means that a heavy-weight non-constant memory object of C type struct t has ML type (st C.su,
C.rw) C.obj which can be abbreviated to (st C.su, C.rw) C.obj.

All ML types (τ C.su, ζ) C.obj are originally completely abstract: they does not come with any operations that
could be applied to their values. In C, the operations to be applied to a struct- or union-value is field selection.
Field selection does depend on the actual C declaration, so it is ml-nlffigen’s job to generate a set of ML-side field-
accessors that correspond to field-access operations in C.

Each field is represented by a function mapping a memory object of the struct- or union-type to an object of the
respective field type. Let int i; and const double d; be fields of some struct t and let tag be the ML tag
type corresponding to t. Here are the types of the (heavy-weight) access functions for i and d:

int i; ; val f i : (tag C.su, ’c) C.obj -> (C.sint, ’c) C.obj
const double d; ; val f d : (tag C.su, ’c) C.obj -> (C.double, C.ro) C.obj

Notice how each field access function is polymorphic in the const property of the argument object. For fields declared
const, the result always uses C.ro while for ordinary fields the argument’s type is used—reflecting the idea that a
field is considered writable if it has not been declared const and, at the same time, the enclosing struct or union is
writable.

Incomplete declarations

If the struct or union is incomplete (i.e., if only its tag t is known), then ml-nlffigen will merely generate an
ML structure (called ST t for struct and UT t for union) with a single type tag that is an abbreviation for the
library-defined type that corresponds to tag t.

7

Complete declarations

If the struct or union with tag t is complete, then ml-nlffigen will generate an ML structure (called S t for
struct and U t for union) which contains at least:

type tag — an abbreviation for the library-defined type that corresponds to t

val size — a value representing information about the size of memory objects of this struct- or union-type. The
ML type of size is tag C.su C.S.size.

val typ — a value representing run-time type information corresponding to this struct- or union-type. The ML
type of typ is tag C.su C.T.typ.

Fields

In addition to type tag, val size, and val typ, the ml-nlffigen tool will generate a small set of structure
elements for each field f of the struct or union. Let tf be the type of f :

type t f f is an abbreviation for the ML encoding of tf .

!val typ f f holds runtime type information regarding tf . If tf is incomplete, then typ f f is omitted.

!val f f is the heavy-weight access function for f . It maps a value of type (tag C.su, ζ) C.obj to a value of
type (t f f, ζf) C.obj and is polymorphic in ζ. If f was declared const, then ζf = C.ro. Otherwise
ζf = ζ. If tf is incomplete, then f f is omitted.

val f f’ is the light-weight access function for f . It maps a value of type (tag C.su, ζ) C.obj’ to a value of
type (t f f, ζf) C.obj’ and is polymorphic in ζ. If f was declared const, then ζf = C.ro. Otherwise
ζf = ζ.

Bitfields

If f is a bitfield, then two access functions are generated:

val f f is the heavy-weight access function, mapping values of type (tag C.su, ζ) C.obj to either ζf C.sbf
or ζf C.ubf, depending on whether the type of f is signed or unsigned. The function is polymorphic in ζ.
If f was declared const, then ζf = C.ro. Otherwise, ζf = ζ.

val f f’ is the light-weight access function, mapping values of type (tag C.su, ζ) C.obj’ to either ζf C.sbf
or ζf C.ubf, using the same conventions as those used for f f .

8

Example

C declaration signature of ML-side representation

struct t {
int i;
const double d;
struct t *nx;

/* complete */
struct s *ms;

/* incomplete */
const int f : 2;
unsigned g : 3;

};

structure S_t : sig
type tag = ...
val size : tag C.su C.S.size
val typ : tag C.su C.T.typ

type t_f_i = C.T.sint
val typ_f_i : t_f_i C.T.typ
val f_i : (tag C.su, ’c) obj -> (t_f_i, ’c) C.obj
val f_i’ : (tag C.su, ’c) obj’ -> (t_f_i, ’c) C.obj’

type t_f_d = C.T.double
val typ_f_d : t_f_d C.T.typ
val f_d : (tag C.su, ’c) obj -> (t_f_d, C.ro) C.obj
val f_d’ : (tag C.su, ’c) obj’ -> (t_f_d, C.ro) C.obj’

type t_f_nx = (tag C.su, C.rw) C.obj C.ptr
val typ_f_nx : t_f_nx C.T.typ
val f_nx : (tag C.su, ’c) obj -> (t_f_nx, ’c) C.obj
val f_nx’ : (tag C.su, ’c) obj’ -> (t_f_nx, ’c) C.obj’

type t_f_ms = (ST_s.tag C.su, C.rw) C.obj C.ptr
val f_ms’ : (tag C.su, ’c) obj’ -> (t_f_ms, ’c) C.obj’

val f_f : (tag C.su, ’c) C.obj -> C.ro C.sbf
val f_f’ : (tag C.su, ’c) C.obj’ -> C.ro C.sbf

val f_g : (tag C.su, ’c) C.obj -> ’c C.ubf
val f_g’ : (tag C.su, ’c) C.obj’ -> ’c C.ubf

end

Unnamed structs or unions

Each occurrence of an unnamed struct or union in C has its own type identity. The ml-nlffigen tool models this
by artificially generating a unique tag for each such occurrence. The tags are chosen in such a way that they cannot clash
with real tag names that might occur elsewhere in the C code. After choosing a fresh tag t, ml-nlffigen produces ML
code according to the same rules that it uses when t is a real tag explicitly present in the C code.

Here are the rules for generating tags:

• If the struct- or union-declaration occurs at top level, i.e., not within the context of a typedef or another
struct- or union-declaration, the generated tag consists of a sequence of decimal digits and can be read as a
non-negative number.

• If the immediate context of the unnamed struct or union is a typedef for a type name t, then the generated
tag will be ’t.

• The tag of an unnamed struct or union is another (named or unnamed) struct or union with (real or
generated) tag t is chosen to be t’n where n is a fresh sequence of decimal digits that can be read as a non-negative
number.

9

Examples

C declaration signature of ML-side representation

struct {
int i;

};

structure S_0 : sig
type tag = ...
val size : tag C.su C.S.size
val typ : tag C.su C.T.typ

type t_f_i = C.T.sint
val typ_f_i : t_f_i C.T.typ
val f_i : (tag C.su, ’c) obj -> (t_f_i, ’c) C.obj
val f_i’ : (tag C.su, ’c) obj’ -> (t_f_i, ’c) C.obj’

end

typedef struct {
int j;

} s;

structure S_’s : sig
type tag = ...
val size : tag C.su C.S.size
val typ : tag C.su C.T.typ

type t_f_j = C.T.sint
val typ_f_j : t_f_j C.T.typ
val f_j : (tag C.su, ’c) obj -> (t_f_j, ’c) C.obj
val f_j’ : (tag C.su, ’c) obj’ -> (t_f_j, ’c) C.obj’

end

struct s {
struct {

int j;
} x;

};

structure S_s’0 : sig
type tag = ...
val size : tag C.su C.S.size
val typ : tag C.su C.T.typ

type t_f_j = C.sint
val typ_f_j : t_f_j C.T.typ
val f_j : (tag C.su, ’c) C.obj -> (t_f_j, ’c) C.obj
val f_j’ : (tag C.su, ’c) C.obj’ -> (t_f_j, ’c) C.obj’

end

structure S_s : sig
type tag = ...
val size : tag C.su C.S.size
val typ : tag C.su C.T.typ

type t_f_x = S_s’0.tag C.su
val typ_f_x : t_f_x C.T.typ
val f_x : (tag C.su, ’c) C.obj -> (t_f_x, ’c) C.obj
val f_x’ : (tag C.su, ’c) C.obj’ -> (t_f_x, ’c) C.obj’

end

3.5 Enumerations (enum)

A C enumeration of constants c1, c2, . . . , ck declared via enum is represented by k ML values of a chosen ML repre-
sentation type. By default, that type is MLRep.Signed.int, i.e., the same type that also represents the C type int.
A command line switch (-enum-constructors or -ec) to ml-nlffigen can change this behavior in such a way
that whenever possible the representation type for an enumeration becomes an ML datatype, thus making it possible to
perform pattern-matching on constants. The representation type cannot be a datatype if two or more enum constants share
the same value as in:

enum ab { A = 12, B = 12 };

10

Complete enumerations

Let t be the tag of the C enum declaration, and let c1, . . . , ck be its set of constants. The ML-side representative of such
a declaration is a structure E t which contains 10 + k elements, the first 10 being:

type tag The ML-side encoding of type enum t is tag C.enum. Values of this type are abstract. They can
be converted to and from concrete integer values of type MLRep.Signed.int using C.Cvt.c2i enum and
C.Cvt.i2c enum, respectively. Like in the case of struct or union, type tag is an abbreviation for the
pre-defined type that uniquely corresponds to the tag name t.

type mlrep This is the type of concrete ML-side values representing the c1, . . . , ck. This type is not the same as tag
C.enum and defaults to MLRep.Signed.int. As mentioned above, by specifying the -enum-constructors
or -ec command-line flag one can force ml-nlffigen to generate a datatype definition for type mlrep.

val m2i This is a function for converting mlrep values to values of type MLRep.Signed.int. If the former is the
same type as the latter (see above), then m2i is the identity function. Otherwise ml-nlffigen generates explicit
code to map each mlrep constructor to an integer value.

val i2m This is the inverse of m2i. If mlrep is a datatype, then m2i will raise exception Domain when the argument
does not correspond to one of the constructors.

val c Function c converts values of type mlrep to values of type tag C.enum. It is merely a composition of
C.Cvt.i2c enum and m2i.

val ml Function ml is the composition of i2m and C.Cvt.c2i enum and converts values of type tag C.enum to
values of type mlrep. It can raise exception Domain if the C type system had been subverted (which is always a
real possibility).

val get Function get fetches a value of type mlrep from a memory object of type (tag C.enum, ζ) C.obj.
It is a composition of i2m and C.Get.enum.

val get’ Function get’ fetches a value of type mlrep from a memory object of type (tag C.enum, ζ) C.obj’.
It is a composition of i2m and C.Get.enum’.

val set Function set stores a value of type mlrep into a memory object of type (tag C.enum, C.rw) C.obj.
It is a composition of m2i and C.Set.enum.

val set’ Function set’ stores a value of type mlrep into a memory object of type (tag C.enum, C.rw)
C.obj’. It is a composition of m2i and C.Set.enum’.

Each of the remaining k elements corresponds to one of the enumeration constants ci. Concretely, the element generated
for ci is val e ci and has type mlrep. If mlrep is a datatype, then the e ci are constructors which can be used in ML
patterns.

11

Examples

C declaration signature of ML-side representation

enum e { A, B, C };
/* default treatment */

structure E_e : sig
type tag = ...
type mlrep = MLRep.Signed.int
val e_A : mlrep (* = 0 *)
val e_B : mlrep (* = 1 *)
val e_C : mlrep (* = 2 *)
val m2i : mlrep -> MLRep.Signed.int
val i2m : MLRep.Signed.int -> mlrep
val c : mlrep -> tag C.enum
val ml : tag C.enum -> mlrep
val get : (tag C.enum, ’c) C.obj -> mlrep
val get’ : (tag C.enum, ’c) C.obj’ -> mlrep
val set : (tag C.enum, C.rw) C.obj * mlrep -> unit
val set’ : (tag C.enum, C.rw) C.obj’ * mlrep -> unit

end

enum e { A, B, C };
/* -enum-constructors */

structure E_e : sig
type tag = ...
datatype mlrep = e_A | e_B | e_C
val m2i : mlrep -> MLRep.Signed.int
val i2m : MLRep.Signed.int -> mlrep
val c : mlrep -> tag C.enum
val ml : tag C.enum -> mlrep
val get : (tag C.enum, ’c) C.obj -> mlrep
val get’ : (tag C.enum, ’c) C.obj’ -> mlrep
val set : (tag C.enum, C.rw) C.obj * mlrep -> unit
val set’ : (tag C.enum, C.rw) C.obj’ * mlrep -> unit

end

enum e { A = 0, B = 1,
C = 0 };

/* with or without

* -enum-constructors */

structure E_e : sig
type tag = ...
type mlrep = MLRep.Signed.int
val e_A : mlrep (* = 0 *)
val e_B : mlrep (* = 1 *)
val e_C : mlrep (* = 0 *)
val m2i : mlrep -> MLRep.Signed.int
val i2m : MLRep.Signed.int -> mlrep
val c : mlrep -> tag C.enum
val ml : tag C.enum -> mlrep
val get : (tag C.enum, ’c) C.obj -> mlrep
val get’ : (tag C.enum, ’c) C.obj’ -> mlrep
val set : (tag C.enum, C.rw) C.obj * mlrep -> unit
val set’ : (tag C.enum, C.rw) C.obj’ * mlrep -> unit

end

Incomplete enumerations

If the enumeration is incomplete, i.e., if only its tag t is known, then no structure E t is generated. Instead, a structure
ET t takes its place which merely contains the type tag as described above.

12

Unnamed enumerations

Anonymous enumerations (enums without a tag) are handled in a way that is very similar to the treatment of unnamed
structs and unions. In particular, the rules for assigning a generated tag are the same if the enum occurs in the context
of a typedef or another struct or union.

However, by default all constants in unnamed top-level enums get collected into one single virtual enumeration whose tag
is ’ (apostrophe). If this is not desired, then the command line flag -nocollect turns this off and lets ml-nlffigen
fall back to the exact same rules that are used for unnamed top-level structs and unions: a fresh “numeric” tag gets
generated for each such enum.

Examples for collected unnamed enumerations

C declaration signature of ML-side representation

enum { A, B };
enum { C, D };
/* with or without

* -enum-constructors */

structure E_’ : sig
type tag = ...
type mlrep = MLRep.Signed.int
val e_A : mlrep (* = 0 *)
val e_B : mlrep (* = 1 *)
val e_C : mlrep (* = 0 *)
val e_D : mlrep (* = 1 *)
...

end

enum { A, B };
enum { C = 2, D };
/* -enum-constructors */

structure E_’ : sig
type tag = ...
datatype mlrep = e_A | e_B | e_C | e_D
...

end

13

