SNORT® Users Manual
2.9.16.1

The Snort Project

July 10, 2020

Copyright (©)1998-2003 Martin Roesch

Copyright (©2001-2003 Chris Green

Copyright (©2003-2013 Sourcefire, Inc.

Copyright (©2014-2020 Cisco and/or its affiliates. All rights reserved.

Contents

1 Snort Overview 9
1.1 Getting Started 9
1.2 Sniffer Mode e 9
1.3 Packet Logger Mode e 10
1.4 Network Intrusion Detection SystemMode 11

1.4.1 NIDS Mode Output Options it et e 11
1.42 Understanding Standard Alert Output 12
1.43 High Performance Configuration 12
1.4.4 Changing AlertOrder 13
1.5 Packet AcquiSition L. e 13
1.5.1 Configuration e e 13
152 peap o 14
1.5.3 AFPACKET 15
1.54 NFQ 15
1.5.5 TPQ . o o o 16
1.5.6 IPFW . . o 16
157 Dumpo 16
1.5.8 Statistics Changes e 17
1.6 Readingpcapfiles L 17
1.6.1 Command line arguments e e 17
1.6.2 Examples 17
1.7 BasicOutput e 19
1.7.1 Timing StatiSticS e e e 19
1.72 PacketI/O Totals e 19
1.7.3 Protocol Statistics e e 20
1.7.4 Snort Memory StatiStics 21
1.7.5 Actions, Limits, and Verdicts e e 21
1.8 Tunneling Protocol Support 22
1.8.1 Multiple Encapsulations L e 23
1.8.2 Logging 23

1.9 Miscellaneous e e e e 23

1.9.1 Running SnortasaDaemon L 23
1.9.2 Running in Rule Stub CreationMode 24
1.9.3 Obfuscating IP Address Printouts L oL 24
1.9.4 Specifying Multiple-Instance Identifiers 24
1.9.5 SnortModes 25
1.10 Control socket e 26
1.11 Configure signal value L e 26
1.12 More Information L L e e 27
Configuring Snort 28
2.1 Includes 28
2.1.1 Format e 28
2.1.2 Variables 28
2.1.3 Config. 31
2.2 PreproCessOrS v v v vttt e e e e e e e 40
221 Frag3 . . . 40
222 SessiOn 43
223 Stream . . .o e e 45
224 sfPortscanl e 49
225 RPCDecode 55
22,6 Performance Monitorl 55
227 HTTPInspect e 60
2.2.8 SMTP Preprocessor o i v v vttt e 76
2.2.9 POPPreprocessor. i e e e 81
2.2.10 IMAPPIreprocessor v v v v v v i e e e e e e e e 83
2.2.11 FTP/Telnet Preprocessor i i ittt e 85
2212 SSH . . . o 92
2213 DNS . 93
22,14 SSLITLS . . o 94
2.2.15 ARP Spoof Preprocessor e 96
2.2.16 DCE/RPC 2 Preprocessor oo v v v iiii e et et e e e 96
2.2.17 Sensitive Data Preprocessor 112
2.2.18 Normalizer e 114
2.2.19 SIP Preprocessoro v i e e e e e e 117
2.2.20 Reputation Preprocessor 123
2.2.21 GTP Decoder and Preprocessoro it 127
2.2.22 Modbus Preprocessor e 135
2.2.23 DNP3 Preprocessor v v v v ittt e e e 138

2.2.24 Appld Preprocessor. L e 141

2.3 Decoder and Preprocessor Rules o L 145
2.3.1 Configuring 145
2.3.2 Reverting to original behavior oL 0oL L 146
24 EventProcessing 146
24.1 RateFiltering L 147
242 BEventFiltering 149
243 EventSuppression e e 151
24.4 EventLogging e 152
245 EventTrace e e 153
2.5 Performance Profiling 153
2.5.1 RuleProfiling 154
2.5.2 Preprocessor Profiling 155
2.5.3 Packet Performance Monitoring (PPM) 158
2.6 OutputModules 161
2.6.1 alertsyslog L e 161
2.6.2 alertfast 163
2.6.3 alertfull 163
2.6.4 alertunixsock. 164
2.6.5 logtepdump e 164
2,60 CSV .. 164
267 unified2 166
2.6.8 lognull e 168
2.6.9 LogLimits e 169
2.7 HostAttribute Table L e 169
27.1 Ruleevaluation L e 169
2.7.2 SnortConfiguration. 169
2.7.3 Host Attribute Table File Format 169
2.7.4 Attribute Table Example 171
2.7.5 Attribute Table Affect on preprocessorso 172
2.8 DynamicModules. L 173
2.8.1 Format e 173
2.82 DIreCtiVES v v i i e e e e 173
2.9 Reloading a Snort Configuration L e 174
2.9.1 Enabling support e e 174
2.9.2 Reloading a configuration 174
2.9.3 Non-reloadable configurationoptions o 174
2.10 Multiple Configurations it e e e e 176
2.10.1 Creating Multiple Configurations 176

2.10.3 How Configurationis applied? L. 178

2.11 Active ReSponse o o e e 178
2.11.1 Enabling ActiveResponse L 179
2.11.2 Configure Sniping o e e 179
2013 FIBXIESP . . . v v o o o e e e e e e e e 179
2,114 Reacto oo e 180
2.11.5 Rule Actions e 181

3 Writing Snort Rules 182
3.1 TheBasics L. e 182
32 RulesHeaders e 182
32.1 Rule Actions 182

322 Protocols 183

323 TPAdAresses e e 183

324 PortNumbers 184

3.2.5 TheDirection Operator« . o vttt e e e e 184

3.2.6 Activate/DynamicRules 185

33 RuleOptions o i e 185
34 GeneralRule Options e 185
341 MSZ . o 185

342 reference 185

343 gid ..o 186

344 Sid. .o 187

345 TeV L 187

34.6 Classtype e 187

347 priority e 189

348 metadata e 189

3.4.9 General Rule Quick Reference, 190

3.5 Payload Detection Rule Options e 190
351 CONtENt e e 190

3.5.2 protected_content L e 191

353 hash . . .o 192

354 length . . .o e 193

355 MOCASE . . o v v vt e e 193

35.6 rawbytes L e 193

357 depth ..o 193

35.8 offseto 194

35.9 distance e 194

3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18
3.5.19
3.5.20
3.5.21
3.5.22
3.5.23
3.5.24
3.5.25
3.5.26
3.5.27
3.5.28
3.5.29
3.5.30
3.5.31
3.5.32
3.5.33
3.5.34
3.5.35
3.5.36
3.5.37
3.5.38
3.5.39
3.5.40
3541
3.542
3.5.43
3.5.44
3.5.45
3.5.46
3.547
3.5.48

withino 195
http_clientbody 195
http_cookie e 196
httpraw_cookie oL 196
http_header L e 197
httporaw_header L 197
httpomethod L 198
http_uri o 198
httpraw_uri L e 198
http_stat_.code L 199
http_stat_msg 199
http_encode e 200
fastpattern e e 201
UFCONEENE L o i ittt s e e e e e e 202
urilen 203
isdataat e e 204
PCIC . o o e 204
pktdata e 205
filedata 206
baseb4_decode L 207
baseb4_data L 208
DYtetest e e 208
bytegump e e 210
byte eXtract e e e e 211
byteomath 213
ftpbounce 215
asnl . ..o e 215
CVS ot e e e e e e e e e e 216
deeiiface 217
dee_opnum L e e e 217
deestub_data 217
sip-method 217
sip_stat_code 217
sip-header L L L L 217
sip-body ... 217
SIPLYPE . o o o e e 217
gtpnfo . . oL e e 217
IP_VEISION o o e e e e e e e 217
SSLLVErSION e 217

3.6

3.7

3.8
39

3.5.49 sslostate e e e e 217

3.5.50 Payload Detection Quick Reference, 218
Non-Payload Detection Rule Options e 218
3.6.1 fragoffset 218
3.6.2 ttl Lo 219
3063 105 . . L 219
3.6.4 0d .. L e 220
3.6.5 POPES 220
3.6.6 fragbits 221
3.6.7 dsize 221
3.6.8 flags 222
369 flow . . . L 223
3.6.10 flowbits 224
3.6.11 seq o e 226
3.6.12 ack . ..o 227
3.6.13 window e 227
3.6.14 Itype 227
3.6.15 dcode e 228
3.6.16 dcmpid 228
3.6.17 1cmp_Seq e e 229
3.6.18 1pC . . e 229
3.6.19 p_proto e 229
3.6.20 sameIP e e 230
3.6.21 stream_reassemble 230
3.6.22 Sream_SiZ€ e e 230
3.6.23 Non-Payload Detection Quick Reference 231
Post-Detection Rule Options L 232
37.1 108to . o 232
372 SESSION . . v i i e 232
373 TESP . o 232
BT4 TEACL. . . . L L 233
375 1aZ . . o 233
377.6 replace e 234
3.7.77 detectionfilter L 234
3.7.8 Post-Detection Quick Reference 235
Rule Thresholds 235
Writing Good Rules 236
3.9.1 Content Matching L 236
3.9.2 Catch the Vulnerability, Not the Exploit 236

3.9.3 Catch the Oddities of the ProtocolintheRule 237

39.4 OptimizingRules L 237

3.9.5 Testing Numerical Values 239

4 Dynamic Modules 242
4.1 Data Structures v i i e e e e e e e e e e e e 242
4.1.1 DynamicPluginMeta 242

4.1.2 DynamicPreprocessorDatao 242

4.13 DynamicEngineData L 243

4.1.4 SFSnortPacket 243

4.15 DynamicRules e 244

4.2 Required Functions 250
4.2.1 Preprocessorso e e e e e e 251

4272 Detection Engine e 251

423 Rules 253

43 Exampleso 253
4.3.1 Preprocessor Example 253

432 Rules 255

5 Snort Development 258
5.1 Submitting Patches 258
5.2 SnortDataFlow e 258
5.2.1 Preprocessors e e e 258

522 Detection Plugins L 259

523 OutputPlugins e 259

5.3 Unified2 File Format e 259
5.3.1 Serial Unified2 Header e 259

532 Unified2Packet 260

533 Unified2IDSEvent. e 260

534 Unified2IDS EventIP6 260

5.3.5 Unified2 IDS Event (Version2) it e 261

5.3.6 Unified2 IDS EventIP6 (Version2) i 261

537 Unified2ExtraData 262

5.3.8 Descriptionof Fields 262

54 Bufferdumputility 264
5.4.1 Example Buffer Dumpoutput o 265

5.5 TheSnortTeam e 266

Chapter 1

Snort Overview

This manual is based on Writing Snort Rules by Martin Roesch and further work from Chris Green <cmg@snort.org>.
It was then maintained by Brian Caswell <bmc@snort.org> and now is maintained by the Snort Team. If you have
a better way to say something or find that something in the documentation is outdated, drop us a line and we will
update it. If you would like to submit patches for this document, you can find the latest version of the documentation
in IXTEX format in the most recent source tarball under /doc/snort_manual.tex. Small documentation updates are
the easiest way to help out the Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of command line options to play with, and it’s not always obvious
which ones go together well. This file aims to make using Snort easier for new users.

Before we proceed, there are a few basic concepts you should understand about Snort. Snort can be configured to run
in three modes:

e Sniffer mode, which simply reads the packets off of the network and displays them for you in a continuous
stream on the console (screen).

o Packet Logger mode, which logs the packets to disk.

o Network Intrusion Detection System (NIDS) mode, which performs detection and analysis on network traffic.
This is the most complex and configurable mode.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e. sniffer mode),
try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you want to see the
application data in transit, try the following:

./snort -vd

This instructs Snort to display the packet data as well as the headers. If you want an even more descriptive display,
showing the data link layer headers, do this:

./snort -vde

As an aside, notice that the command line switches can be listed separately or in a combined form. The last command
could also be typed out as:

./snort -d -v -e

to produce the same result.

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to specify a
logging directory and Snort will automatically know to go into packet logger mode:

./snort -dev -1 ./log

Of course, this assumes you have a directory named log in the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it collects every packet it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -1 switch, you may notice that Snort sometimes uses the address of the remote computer
as the directory in which it places packets and sometimes it uses the local host address. In order to log relative to the
home network, you need to tell Snort which network is the home network:

./snort -dev -1 ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application data into the
directory ./log, and you want to log the packets relative to the 192.168.1.0 class C network. All incoming packets
will be recorded into subdirectories of the log directory, with the directory names being based on the address of the
remote (non-192.168.1) host.

ANOTE

Note that if both the source and destination hosts are on the home network, they are logged to a directory
with a name based on the higher of the two port numbers or, in the case of a tie, the source address.

If you’re on a high speed network or you want to log the packets into a more compact form for later analysis, you
should consider logging in binary mode. Binary mode logs the packets in tcpdump format to a single binary file in the
logging directory:

./snort -1 ./log -b

Note the command line changes here. We don’t need to specify a home network any longer because binary mode
logs everything into a single file, which eliminates the need to tell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or specify the -d or -e switches because in binary mode the entire
packet is logged, not just sections of it. All you really need to do to place Snort into logger mode is to specify a logging
directory at the command line using the -1 switch—the -b binary logging switch merely provides a modifier that tells
Snort to log the packets in something other than the default output format of plain ASCII text.

Once the packets have been logged to the binary file, you can read the packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or Ethereal). Snort can also read the packets back by using the
-r switch, which puts it into playback mode. Packets from any tcpdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

10

./snort -dv -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging and intrusion detection
modes, as well as with the BPF interface that’s available from the command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPF filter at the command line and Snort will only see the
ICMP packets in the file:

./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snort and tcpdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) mode so that you don’t record every single packet sent down
the wire, try this:

./snort -dev -1 ./log -h 192.168.1.0/24 -c snort.conf

where snort . conf is the name of your snort configuration file. This will apply the rules configured in the snort . conf
file to each packet to decide if an action based upon the rule type in the file should be taken. If you don’t specify an
output directory for the program, it will default to /var/log/snort.

One thing to note about the last command line is that if Snort is going to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake of speed. The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It’s also not necessary to record the data link headers for most applications, so you can usually omit the -e switch, too.
./snort -d -h 192.168.1.0/24 -1 ./log -c snort.conf

This will configure Snort to run in its most basic NIDS form, logging packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the alert message in
addition to the full packet headers. There are several other alert output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are seven alert modes available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line switch. These
options are:

Option Description

-A fast Fast alert mode. Writes the alert in a simple format with a timestamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will be used automatically if you do not specify
a mode.

-A unsock | Sends alerts to a UNIX socket that another program can listen on.

-A none Turns off alerting.

-A console | Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

11

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N command line switch.

For output modes available through the configuration file, see Section 2.6.

ANOTE

Command line logging options override any output options specified in the configuration file. This allows
debugging of configuration issues quickly via the command line.

To send alerts to syslog, use the -s switch. The default facilities for the syslog alerting mechanism are LOG_AUTHPRIV
and LOG_ALERT. If you want to configure other facilities for syslog output, use the output plugin directives in
snort.conf. See Section 2.6.1 for more details on configuring syslog output.

For example, use the following command line to log to default (decoded ASCII) facility and send alerts to syslog:
./snort -c snort.conf -1 ./log -h 192.168.1.0/24 -s

As another example, use the following command line to log to the default facility in /var/log/snort and send alerts to a
fast alert file:

./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually look like the following:
[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user what component of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. In this case, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred to as Signature ID). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directly into the rules with the sid option. In this case, 56 represents a
T/TCP event.

The third number is the revision ID. This number is primarily used when writing signatures, as each rendition of the
rule should increment this number with the rev option.

1.4.3 High Performance Configuration

If you want Snort to go fast (like keep up with a 1000 Mbps connection), you need to use unified2 logging and a
unified? log reader such as barnyard2. This allows Snort to log alerts in a binary form as fast as possible while another
program performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsed, but still somewhat fast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimal alerts. For example:

./snort -b -A fast -c snort.conf

12

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packets may not be appropriate for all installations. The Pass rules
are applied first, then the Drop rules, then the Alert rules and finally, Log rules are applied.

ANOTE

Sometimes an errant pass rule could cause alerts to not show up, in which case you can change the default
ordering to allow Alert rules to be applied before Pass rules. For more information, please refer to the
--alert-before-pass option.

Several command line options are available to change the order in which rule actions are taken.

e ——alert-before-pass option forces alert rules to take affect in favor of a pass rule.

e ——treat-drop-as-alert causes drop and reject rules and any associated alerts to be logged as alerts, rather
then the normal action. This allows use of an inline policy with passive/IDS mode. The sdrop rules are not
loaded.

e ——process-all-events option causes Snort to process every event associated with a packet, while taking the
actions based on the rules ordering. Without this option (default case), only the events for the first action based

on rules ordering are processed.

ANOTE

Pass rules are special cases here, in that the event processing is terminated when a pass rule is encountered,
regardless of the use of ——process-all-events.

1.5 Packet Acquisition

Snort 2.9 introduces the DAQ, or Data Acquisition library, for packet I/O. The DAQ replaces direct calls to libpcap
functions with an abstraction layer that facilitates operation on a variety of hardware and software interfaces without
requiring changes to Snort. It is possible to select the DAQ type and mode when invoking Snort to perform pcap
readback or inline operation, etc.

ANOTE

Some network cards have features which can affect Snort. Two of these features are named “Large Receive
Offload” (Iro) and ”Generic Receive Offload” (gro). With these features enabled, the network card performs
packet reassembly before they’re processed by the kernel.
By default, Snort will truncate packets larger than the default snaplen of 1518 bytes. In addition, LRO and
GRO may cause issues with Stream target-based reassembly. We recommend that you turn off LRO and
GRO. On linux systems, you can run:

$ ethtool -K ethl gro off

$ ethtool -K ethl lro off

1.5.1 Configuration
Assuming that you did not disable static modules or change the default DAQ type, you can run Snort just as you always

did for file readback or sniffing an interface. However, you can select and configure the DAQ when Snort is invoked
as follows:

13

./snort \

[-—dag <type>] \
--dag-mode <mode>] \
-dag-dir <dir>] \
-dag-var <var>]

[
[,
[,
config daqg: <type>

config daqg dir: <dir>

config dag var: <var>
config dag_mode: <mode>

<type> = pcap | afpacket | dump | nfqg | ipg | ipfw
<mode> ::= read-file | passive | inline

<var> ::= arbitrary <name>=<value> passed to DAQ
<dir> ::= path where to look for DAQ module so’s

The DAQ type, mode, variable, and directory may be specified either via the command line or in the conf file. You
may include as many variables and directories as needed by repeating the arg / config. DAQ type may be specified at
most once in the conf and once on the command line; if configured in both places, the command line overrides the
conf.

If the mode is not set explicitly, -Q will force it to inline, and if that hasn’t been set, -r will force it to read-file, and
if that hasn’t been set, the mode defaults to passive. Also, -Q and —dag-mode inline are allowed, since there is no
conflict, but -Q and any other DAQ mode will cause a fatal error at start-up.

Note that if Snort finds multiple versions of a given library, the most recent version is selected. This applies to static
and dynamic versions of the same library.

./snort --dag-list[=<dir>]
./snort --dag-dir=<dir> --dag-list

The above commands search the specified directories for DAQ modules and print type, version, and attributes of each.
This feature is not available in the conf. Snort stops processing after parsing —daq-list so if you want to add one or more
directories add —daqg-dir options before —daq-list on the command line. (Since the directory is optional to —daq-list,
you must use an = without spaces for this option.)

1.5.2 pcap

pcap is the default DAQ. if snort is run w/o any DAQ arguments, it will operate as it always did using this module.
These are equivalent:

./snort -1 <device>
./snort -r <file>

./snort --dag pcap --dag-mode passive -i <device>
./snort --dag pcap --dag-mode read-file -r <file>

You can specify the buffer size pcap uses with:
./snort --dag pcap --dag-var buffer_size=<#bytes>

Note that the pcap DAQ does not count filtered packets.

14

1.5.3 AFPACKET

afpacket functions similar to the memory mapped pcap DAQ but no external library is required:

./snort --dag afpacket -i <device>
[--dag-var buffer_size_mb=<#MB>]
[--dag-var debug]

If you want to run afpacket in inline mode, you must set device to one or more interface pairs, where each member of
a pair is separated by a single colon and each pair is separated by a double colon like this:

eth0:ethl

or this:
ethO:ethl::eth2:eth3

By default, the afpacket DAQ allocates 128MB for packet memory. You can change this with:
--dag-var buffer_size_mb=<#MB>

Note that the total allocated is actually higher, here’s why. Assuming the default packet memory with a snaplen of
1518, the numbers break down like this:
1. The frame size is 1518 (snaplen) + the size of the AFPacket header (66 bytes) = 1584 bytes.
The number of frames is 128 MB / 1518 = 84733.
The smallest block size that can fit at least one frame is 4 KB = 4096 bytes @ 2 frames per block.

As aresult, we need 84733 /2 = 42366 blocks.

LU T

Actual memory allocated is 42366 * 4 KB = 165.5 MB.

1.54 NFQ

NFQ is the new and improved way to process iptables packets:

./snort --dag nfqg \
[--dag-var device=<dev>]
[--dag-var proto=<proto>]
[--dag-var queue=<qgid>] \

[--dag-var queue_len=<glen>]

\
\

<dev> ::= ip | eth0, etc; default is IP injection
<proto> ::= ip4 | ip6 | ip*; default is ip4

<gid> ::= 0..65535; default is 0

<glen> ::= 0..65535; default is 0

Notes on iptables can be found in the DAQ distro README.

15

155 IPQ

IPQ is the old way to process iptables packets. It replaces the inline version available in pre-2.9 versions built with
this:

./configure --enable-inline / -DGIDS
Start the IPQ DAQ as follows:
./snort --daq ipq \

[--dag-var device=<dev>] \
[--dag-var proto=<proto>] \

<dev> ::= ip | eth0O, etc; default is IP injection
<proto> ::= ip4 | ip6; default is ip4
1.5.6 IPFW

IPFW is available for BSD systems. It replaces the inline version available in pre-2.9 versions built with this:
./configure --enable-ipfw / -DGIDS -DIPFW
This command line argument is no longer supported:
./snort -J <port#>
Instead, start Snort like this:
./snort --daq ipfw [--dag-var port=<port>]
<port> ::= 1..65535; default is 8000

* IPFW only supports ip4 traffic.

1.5.7 Dump

The dump DAQ allows you to test the various inline mode features available in 2.9 Snort like injection and normaliza-
tion.

./snort -i <device> --dag dump
./snort -r <pcap> --daq dump

By default a file named inline-out.pcap will be created containing all packets that passed through or were generated
by snort. You can optionally specify a different name.

./snort --dag dump --dag-var file=<name>

dump uses the pcap daq for packet acquisition. It therefore does not count filtered packets.

Note that the dump DAQ inline mode is not an actual inline mode. Furthermore, you will probably want to have the
pcap DAQ acquire in another mode like this:

./snort -r <pcap> -Q --dag dump --dag-var load-mode=read-file
./snort -i <device> -Q --daqg dump --dag-var load-mode=passive

16

1.5.8 Statistics Changes
The Packet Wire Totals and Action Stats sections of Snort’s output include additional fields:

e Filtered count of packets filtered out and not handed to Snort for analysis.

e Injected packets Snort generated and sent, e.g. TCP resets.

e Allow packets Snort analyzed and did not take action on.

e Block packets Snort did not forward, e.g. due to a block rule.

e Replace packets Snort modified.

e Whitelist packets that caused Snort to allow a flow to pass w/o inspection by any analysis program.
e Blacklist packets that caused Snort to block a flow from passing.

e Ignore packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort.

The action stats show “blocked” packets instead of “dropped” packets to avoid confusion between dropped packets
(those Snort didn’t actually see) and blocked packets (those Snort did not allow to pass).

1.6 Reading pcap files

Instead of having Snort listen on an interface, you can give it a packet capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful for testing and debugging Snort.

1.6.1 Command line arguments

Any of the below can be specified multiple times on the command line (-r included) and in addition to other Snort
command line options. Note, however, that specifying —-pcap-reset and —-pcap-show multiple times has the same
effect as specifying them once.

Option Description

-r <file> Read a single pcap.

—--pcap-single=<file> Same as -r. Added for completeness.

——pcap-file=<file> File that contains a list of pcap files to read. Can specify path to each pcap or
directory to recurse to get pcaps.

——pcap-list="<list>" A space separated list of pcaps to read.

—--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ASCII order.

—-pcap-filter=<filter> | Shell style filter to apply when getting pcaps from file or directory. This fil-
ter will apply to any --pcap-file or —-pcap-dir arguments following. Use
--pcap-no-filter to delete filter for following --pcap-file or --pcap-dir
arguments or specify ——pcap-filter again to forget previous filter and to apply
to following —-pcap-file or ——pcap-dir arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory.

-—pcap-reset If reading multiple pcaps, reset snort to post-configuration state before reading
next pcap. The default, i.e. without this option, is not to reset state.

—-—pcap-show Print a line saying what pcap is currently being read.

1.6.2 Examples
Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

17

Read pcaps from a file

$ cat foo.txt

fool.pcap

foo2.pcap

/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read fool.pcap, foo2.pcap and all files under /home/foo/pcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap files or not.

Read pcaps from a command line list
$ snort --pcap-list="fool.pcap foo2.pcap foo3.pcap"

This will read fool.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory
$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /home/foo/pcaps.

Using filters

$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pcaps

The above will only include files that match the shell pattern ”*.pcap”, in other words, any file ending in ”.pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> —-pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps

In the above, the first filter ”*.pcap” will only be applied to the pcaps in the file “foo.txt” (and any directories that are
recursed in that file). The addition of the second filter ”*.cap” will cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending in .cap” will be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> —-pcap-no-filter --pcap-dir=/home/foo/pcaps

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcaps will be included.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> —-pcap-no-filter —--pcap-dir=/home/foo/pcaps \
> —-pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps2

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under

/home/foo/pcaps, so all files found under /home/foo/pcaps will be included, then the filter ”*.cap” will be applied
to files found under /home/foo/pcaps2.

18

Resetting state

$ snort --pcap-dir=/home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foo/pcaps, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be flushed, statistics reset, etc. For each pcap, it will be like Snort
is seeing traffic for the first time.

Printing the pcap
$ snort --pcap-dir=/home/foo/pcaps --pcap-show

The above example will read all of the files under /home/foo/pcaps and will print a line indicating which pcap is
currently being read.

1.7 Basic Output

Snort does a lot of work and outputs some useful statistics when it is done. Many of these are self-explanatory. The
others are summarized below. This does not include all possible output data, just the basics.

1.7.1 Timing Statistics

This section provides basic timing statistics. It includes total seconds and packets as well as packet processing rates.
The rates are based on whole seconds, minutes, etc. and only shown when non-zero.

Example:

Run time for packet processing was 175.856509 seconds
Snort processed 3716022 packets.
Snort ran for 0 days 0 hours 2 minutes 55 seconds
Pkts/min: 1858011
Pkts/sec: 21234

1.7.2 Packet I/0 Totals

This section shows basic packet acquisition and injection peg counts obtained from the DAQ. If you are reading pcaps,
the totals are for all pcaps combined, unless you use —pcap-reset, in which case it is shown per pcap.

e Outstanding indicates how many packets are buffered awaiting processing. The way this is counted varies per
DAQ so the DAQ documentation should be consulted for more info.

e Filtered packets are not shown for pcap DAQs.

e Injected packets are the result of active response which can be configured for inline or passive modes.

Example:

Packet I/O Totals:
Received: 3716022
Analyzed: 3716022 (100.000%)

19

Dropped: 0 (0.000%)
Filtered: 0 (0.000%)

Outstanding: 0 (0.000%)
Injected: 0

1.7.3 Protocol Statistics

Traffic for all the protocols decoded by Snort is summarized in the breakdown section. This traffic includes internal
“pseudo-packets” if preprocessors such as frag3 and stream5 are enabled so the total may be greater than the number
of analyzed packets in the packet I/O section.

e Disc counts are discards due to basic encoding integrity flaws that prevents Snort from decoding the packet.

e Other includes packets that contained an encapsulation that Snort doesn’t decode.

e S5 G 1/2 is the number of client/server sessions stream5 flushed due to cache limit, session timeout, session

reset.

Example:

Breakdown by protocol (includes rebuilt packets):

Eth: 3722347 (100.000%)
VLAN: 0 (0.000%)
IP4: 1782394 (47.884%)
Frag: 3839 (0.103%)
ICMP: 38860 (1.044%)
UDP: 137162 (3.685%)

TCP: 1619621 (43.511%)

IP6: 1781159 (47.850%)

IP6 Ext: 1787327 (48.016%)
IP6 Opts: 6168 (0.166%)
Fragb6: 3839 (0.103%)
ICMP6: 1650 (0.044%)
UDP6: 140446 (3.773%)
TCP6: 1619633 (43.511%)
Teredo: 18 (0.000%)
ICMP-IP: 0 (0.000%)
EAPOL: 0 (0.000%)
IP4/IP4: 0 (0.000%)
IP4/IP6: 0 (0.000%)
IP6/IP4: 0 (0.000%)
IP6/IP6: 0 (0.000%)
GRE: 202 (0.005%)

GRE Eth: 0 (0.000%)
GRE VLAN: 0 (0.000%)
GRE IP4: 0 (0.000%)
GRE IPG: 0 (0.000%)
GRE IP6 Ext: 0 (0.000%)
GRE PPTP: 202 (0.005%)
GRE ARP: 0 (0.000%)
GRE IPX: 0 (0.000%)
GRE Loop: 0 (0.000%)
MPLS: 0 (0.000%)
ARP: 104840 (2.817%)

20

IPX: 60 (0.002%)

Eth Loop: 0 (0.000%)

Eth Disc: 0 (0.000%)

IP4 Disc: 0 (0.000%)

IP6 Disc: 0 (0.000%)

TCP Disc: 0 (0.000%)

UDP Disc: 1385 (0.037%)

ICMP Disc: 0 (0.000%)

All Discard: 1385 (0.037%)

Other: 57876 (1.555%)

Bad Chk Sum: 32135 (0.863%)

Bad TTL: 0 (0.000%)

S5 G 1: 1494 (0.040%)

S5 G 2: 1654 (0.044%)
Total: 3722347

1.7.4 Snort Memory Statistics

On systems with mallinfo (3), you will see additional statistics. Check the man page of mallinfo for details

Example:

Memory usage summary:

Total non-mmapped bytes (arena): 415481856
Bytes in mapped regions (hblkhd): 409612288
Total allocated space (uordblks): 92130384
Total free space (fordblks): 323351472
Topmost releasable block (keepcost): 3200

1.7.5 Actions, Limits, and Verdicts

Action and verdict counts show what Snort did with the packets it analyzed. This information is only output in IDS
mode (when snort is run with the -c <conf> option).

e Alerts is the number of alert, and block actions processed as determined by the rule actions. Here block includes
block, drop, and reject actions.

Limits arise due to real world constraints on processing time and available memory. These indicate potential actions
that did not happen:

e Match Limit counts rule matches were not processed due to the config detection: max_queue_events
setting. The default is 5.

e Queue Limit counts events couldn’t be stored in the event queue due to the config event_queue: max_queue
setting. The default is 8.

e Log Limit counts events were not alerted due to the config event_queue: log setting. The default is 3.
e Event Limit counts events not alerted due to event_filter limits.

e Alert Limit counts events were not alerted because they already were triggered on the session.

Verdicts are rendered by Snort on each packet:

21

Allow = packets Snort analyzed and did not take action on.

Block = packets Snort did not forward, e.g. due to a block rule. ”Block” is used instead of “Drop” to avoid
confusion between dropped packets (those Snort didn’t actually see) and blocked packets (those Snort did not
allow to pass).

Replace = packets Snort modified, for example, due to normalization or replace rules. This can only happen in
inline mode with a compatible DAQ.

Whitelist = packets that caused Snort to allow a flow to pass w/o inspection by any analysis program. Like
blacklist, this is done by the DAQ or by Snort on subsequent packets.

Blacklist = packets that caused Snort to block a flow from passing. This is the case when a block TCP rule fires.
If the DAQ supports this in hardware, no further packets will be seen by Snort for that session. If not, snort will
block each packet and this count will be higher.

Ignore = packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort. Like blacklist,
this is done by the DAQ or by Snort on subsequent packets.

Int BlkIst = packets that are GTP, Teredo, 6in4 or 4in6 encapsulated that are being blocked. These packets could
get the Blacklist verdict if config tunnel_verdicts was set for the given protocol. Note that these counts are
output only if non-zero. Also, this count is incremented on the first packet in the flow that alerts. The alerting
packet and all following packets on the flow will be counted under Block.

Int Whtlst = packets that are GTP, Teredo, 6in4 or 4in6 encapsulated that are being allowed. These packets could
get the Whitelist verdict if config tunnel_verdicts was set for the given protocol. Note that these counts
are output only if non-zero. Also, this count is incremented for all packets on the flow starting with the alerting
packet.

Example:

Action Stats:

Alerts: 0 (0.000%)
Logged: 0 (0.000%)
Passed: 0 (0.000%)
Limits:
Match: 0
Queue: 0
Log: 0
Event: 0
Alert: 0
Verdicts:
Allow: 3716022 (100.000%)
Block: 0 (0.000%)
Replace: 0 (0.000%)
Whitelist: 0 (0.000%)
Blacklist: 0 (0.000%)
Ignore: 0 (0.000%)

1.8 Tunneling Protocol Support

Snort supports decoding of many tunneling protocols, including GRE, PPTP over GRE, MPLS, IP in IP, and ERSPAN,
all of which are enabled by default.

To disable support for any GRE related encapsulation, PPTP over GRE, IPv4/IPv6 over GRE, and ERSPAN, an extra
configuration option is necessary:

22

$./configure --disable-gre
To disable support for MPLS, an separate extra configuration option is necessary:

$./configure --disable-mpls

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scenarios such as
Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or
Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is logged, e.g.
Eth IP1 GRE IP2 TCP Payload

gets logged as
Eth IP2 TCP Payload

and
Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

ANOTE

Decoding of PPTP, which utilizes GRE and PPP, is not currently supported on architectures that require word
alignment such as SPARC.

1.9 Miscellaneous

1.9.1 Running Snort as a Daemon
If you want to run Snort as a daemon, you can the add -D switch to any combination described in the previous sections.
Please notice that if you want to be able to restart Snort by sending a SIGHUP signal to the daemon, you must specify

the full path to the Snort binary when you start it, for example:

/usr/local/bin/snort -d -h 192.168.1.0/24 \
-1 /var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

23

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file in the log directory. In Snort 2.6, the --pid-path
command line switch causes Snort to write the PID file in the directory specified.

Additionally, the —-create-pidfile switch can be used to force creation of a PID file even when not running in
daemon mode.

The PID file will be locked so that other snort processes cannot start. Use the ——nolock-pidfile switch to not lock
the PID file.

If you do not wish to include the name of the interface in the PID file, use the -——no-interface-pidfile switch.

1.9.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a directory, you must use the —dump-dynamic-rules command line
option. These rule stub files are used in conjunction with the shared object rules. The path can be relative or absolute.

/usr/local/bin/snort -c /usr/local/etc/snort.conf \
——dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using the config option dump-dynamic-rules-path as follows:
config dump-dynamic-rules-path: /tmp/sorules
The path configured by command line has precedence over the one configured using dump-dynamic-rules-path.

/usr/local/bin/snort -c /usr/local/etc/snort.conf \
-—-dump-dynamic-rules

snort.conf:
config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /tmp/sorules.

1.9.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, you might want to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if you don’t want people on the mailing list to know the TP
addresses involved. You can also combine the -O switch with the -h switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who sees the address of the attacking host. For example, you
could use the following command to read the packets from a log file and dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

./snort -d -v -r snort.log -0 -h 192.168.1.0/24

1.9.4 Specifying Multiple-Instance Identifiers

In Snort v2.4, the -G command line option was added that specifies an instance identifier for the event logs. This option
can be used when running multiple instances of snort, either on different CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specified to generate unique event IDs. Users can specify either a
decimal value (-G 1) or hex value preceded by Ox (-G 0x11). This is also supported via a long option —-logid.

24

1.9.5 Snort Modes

Snort can operate in three different modes namely tap (passive), inline, and inline-test. Snort policies can be configured
in these three modes too.

Explanation of Modes

e Inline

When Snort is in Inline mode, it acts as an IPS allowing drop rules to trigger. Snort can be configured to run in
inline mode using the command line argument -Q and snort config option policy_mode as follows:

snort -Q
config policy_mode:inline

® Passive

When Snort is in Passive mode, it acts as a IDS. Drop rules are not loaded (without —treat-drop-as-alert). Snort
can be configured to passive mode using the snort config option policy_mode as follows:

config policy_mode:tap

e Inline-Test

Inline-Test mode simulates the inline mode of snort, allowing evaluation of inline behavior without affecting
traffic. The drop rules will be loaded and will be triggered as a Wdrop (Would Drop) alert. Snort can be
configured to run in inline-test mode using the command line option (—enable-inline-test) or using the snort
config option policy_mode as follows:

snort --enable-inline-test
config policy_mode:inline_test

ANOTE

‘ Please note —enable-inline-test cannot be used in conjunction with -Q.

Behavior of different modes with rule options

| Rule Option | Inline Mode | Passive Mode | Inline-Test Mode
reject Drop + Response Alert + Response Wdrop + Response
react Blocks and send notice | Blocks and send notice | Blocks and send notice
normalize Normalizes packet Doesn’t normalize Doesn’t normalize
replace replace content Doesn’t replace Doesn’t replace
respond close session close session close session

Behavior of different modes with rules actions

25

Adapter Mode | Snort args | config policy_mode | Drop Rule Handling |

Passive ——treat-drop-as-alert tap Alert
Passive no args tap Not Loaded
Passive --treat-drop-as-alert inline_test Alert
Passive no args inline_test Would Drop
Passive --treat-drop-as-alert inline Alert
Passive no args inline Not loaded + warning
Inline Test -—enable-inline-test --treat-drop-as-alert tap Alert
Inline Test -—enable-inline-test tap Would Drop
Inline Test —--enable-inline-test --treat-drop-as-alert inline_test Alert
Inline Test -—enable-inline-test inline_test Would Drop
Inline Test --enable-inline-test --treat-drop-as-alert inline Alert
Inline Test -—enable-inline-test inline Would Drop
Inline -Q -—treat-drop-as-alert tap Alert
Inline -0 tap Alert
Inline -Q -——treat-drop-as-alert inline_test Alert
Inline -0 inline_test Would Drop
Inline -Q --treat-drop-as-alert inline Alert
Inline -0 inline Drop

1.10 Control socket

Snort can be configured to provide a Unix socket that can be used to issue commands to the running process. You must
build snort with the -—enable-control-socket option. The control socket functionality is supported on Linux only.

Snort can be configured to use control socket using the command line argument --cs-dir <path> and snort config
option cs_dir as follows:

snort --cs-dir <path>
config cs_dir:<path>

<path> specifies the directory for snort to create the socket. If relative path is used, the path is relative to pid path
specified. If there is no pid path specified, it is relative to current working directory.

A command snort_control is made and installed along with snort in the same bin directory when configured with
the ——enable-control-socket option.

1.11 Configure signal value

On some systems, signal used by snort might be used by other functions. To avoid conflicts, users can change the
default signal value through . /configure options for non-Windows system.

These signals can be changed:

e SIGNAL_SNORT_RELOAD
e SIGNAL_SNORT_DUMP_STATS
o SIGNAL_SNORT_ROTATE_STATS

e SIGNAL_SNORT_READ_ATTR_TBL

Syntax:

26

./configure SIGNAL_SNORT_RELOAD=<value/name> SIGNAL_SNORT_DUMP_STATS=<value/name>\
SIGNAL_SNORT_READ ATTR_TBL=<value/name> SIGNAL_SNORT_ROTATE_STATS=<value/name>

You can set those signals to user defined values or known signal names in the system. The following example changes
the rotate stats signal to 31 and reload attribute table to signal SIGUSR2 :

./configure SIGNAL_SNORT_ROTATE_STATS=31 SIGNAL_SNORT_READ_ATTR_TBL=SIGUSR2

If the same signal is assigned more than once a warning will be logged during snort initialization. If a signal handler
cannot be installed a warning will be logged and that has to be fixed, otherwise the functionality will be lost.

| Signal name

Default value | Action

SIGTERM SIGTERM exit
SIGINT SIGINT exit
SIGQUIT SIGQUIT exit

Signals used in snort SIGPIPE SIGPIPE ignore
SIGNAL_SNORT_RELOAD SIGHUP reload snort
SIGNAL_SNORT_DUMP_STATS SIGUSRI1 dump stats
SIGNAL_SNORT_ROTATE_STATS SIGUSR2 rotate stats
SIGNAL_SNORT_READ_ATTR_TBL | SIGURG reload attribute table
SIGNAL_SNORT_CHILD_READY SIGCHLD internal use in daemon mode

1.12 More Information

Chapter 2 contains much information about many configuration options available in the configuration file. The Snort
manual page and the output of snort -? or snort --help contain information that can help you get Snort running
in several different modes.

ANOTE

In many shells, a backslash (\) is needed to escape the ?, so you may have to type snort -\? instead of
snort -2 for a list of Snort command line options.

The Snort web page (http://www.snort.org) and the Snort Users mailing list:
http://marc.theaimsgroup.com/?1l=snort-users

at snort-users@lists.snort.org provide informative announcements as well as a venue for community discussion
and support. There’s a lot to Snort, so sit back with a beverage of your choosing and read the documentation and
mailing list archives.

27

Chapter 2

Configuring Snort

2.1 Includes

The include keyword allows other snort config files to be included within the snort.conf indicated on the Snort
command line. It works much like an #include from the C programming language, reading the contents of the named
file and adding the contents in the place where the include statement appears in the file.

2.1.1 Format

include <include file path/name>

ANOTE

| Note that there is no semicolon at the end of this line.

Included files will substitute any predefined variable values into their own variable references. See Section 2.1.2 for
more information on defining and using variables in Snort config files.

2.1.2 Variables

Three types of variables may be defined in Snort:

e var
e portvar

e ipvar
These are simple substitution variables set with the var, ipvar, or portvar keywords as follows:

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> SMY_NET $MY_PORTS (flags:S; msg:"SYN packet";)
include S$RULE_PATH/example.rule

28

IP Variables and IP Lists
IPs may be specified individually, in a list, as a CIDR block, or any combination of the three. IP variables should be

specified using ’ipvar’ instead of *var’. Using "var’ for an IP variable is still allowed for backward compatibility, but it
will be deprecated in a future release.

IP variable name can begin with an alphanumeric character [A-Za-z0-9] or ’_’ and should be followed by characters
and numbers. Only numbers are not accepted as variable names.

IPs, IP lists, and CIDR blocks may be negated with *!”. Negation is handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list was logically OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IP from 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The element "any’ can be used to match all IPs, although ’!any’
is not allowed. Also, negated IP ranges that are more general than non-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP lists.

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]
alert tcp $EXAMPLE any -> any any (msg:"Example"; sid:1;)

alert tcp [1.0.0.0/8,!'1.1.1.0/24] any -> any any (msg:"Example";sid:2;)

The following examples demonstrate some invalid uses of IP variables and IP lists.

Use of lany:

ipvar EXAMPLE any
alert tcp !SEXAMPLE any -> any any (msg:"Example";sid:3;)

Different use of !any:

ipvar EXAMPLE 'any
alert tcp SEXAMPLE any -> any any (msg:"Example";sid:3;)

Logical contradictions:
ipvar EXAMPLE [1.1.1.1,'1.1.1.1]
Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,!1.1.0.0/16]

Port Variables and Port Lists

Portlists supports the declaration and lookup of ports and the representation of lists and ranges of ports. Variables,
ranges, or lists may all be negated with *!”. Also, "any’ will specify any ports, but ’!any’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranges may be specified with a ’:’, such as in:

29

[10:50,888:900]

Port variables should be specified using ’portvar’. The use of ’var’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a "var’ can still be used to declare a port variable, provided the variable
name either ends with *_PORT’ or begins with "PORT_’.

The following examples demonstrate several valid usages of both port variables and port lists.

portvar EXAMPLEl 80

var EXAMPLE2_PORT ([80:90]

var PORT_EXAMPLEZ2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [!70:90]

portvar EXAMPLES [80,91:95,100:200]

alert tcp any S$EXAMPLEl -> any $EXAMPLE2_PORT (msg:"Example"; sid:1;)
alert tcp any S$PORT_EXAMPLE2 -> any any (msg:"Example"; sid:2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Example"; sid:3;)

Several invalid examples of port variables and port lists are demonstrated below:

Use of lany:

portvar EXAMPLES !any
var EXAMPLES !any

Logical contradictions:
portvar EXAMPLE6 [80,!80]
Ports out of range:
portvar EXAMPLE7 [65536]
Incorrect declaration and use of a port variable:

var EXAMPLES 80
alert tcp any S$EXAMPLE8 -> any any (msg:"Example"; sid:4;)

Port variable used as an IP:
alert tcp SEXAMPLEl any -> any any (msg:"Example"; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You can define meta-variables using the $ operator. These can
be used with the variable modifier operators ? and -, as described in the following table:

30

Variable Syntax Description

var Defines a meta-variable.

$(var) or $var Replaces with the contents of variable var.

$(var:-default) | Replaces the contents of the variable var with “default” if var is undefined.
$(var:?message) | Replaces with the contents of variable var or prints out the error message and
exits.

Here is an example of advanced variable usage in action:

ipvar MY _NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For instance, port variables can be defined in terms of other port
variables, but old-style variables (with the ’var’ keyword) can not be embedded inside a ’portvar’.

Valid embedded variable:

portvar pvarl 80
portvar pvar2 [Spvarl, 90]

Invalid embedded variable:

var pvarl 80
portvar pvar2 [S$pvarl,90]

Likewise, variables can not be redefined if they were previously defined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can be specified in the configuration file.

Format

config <directive> [: <value>]

31

Config Directive

Description

config alert_with_interface_name

Appends interface name to alert (snort -I).

config alertfile: <filename>

Sets the alerts output file.

config asnl: <max-nodes>

Specifies the maximum number of nodes to track when doing
ASNI1 decoding. See Section 3.5.36 for more information and
examples.

config autogenerate_preprocessor
_decoder_rules

If Snort was configured to enable decoder and preprocessor
rules, this option will cause Snort to revert back to its origi-
nal behavior of alerting if the decoder or preprocessor generates
an event.

config bpf_file: <filename>

Specifies BPF filters (snort -F).

config checksum_drop: <types> Types of packets to drop if invalid checksums. Values: none,
noip, notcp, noicmp, noudp, ip, tcp, udp, icmp or all
(only applicable in inline mode and for packets checked per
checksum_mode config option).

config checksum.mode: <types> Types of packets to calculate checksums. Values: none, noip,
notcp, noicmp, noudp, ip, tcp, udp, icmp or all.

config chroot: <dir> Chroots to specified dir (snort -t).

config classification: <class> See Table 3.2 for a list of classifications.

config cs_dir: <path>

configure snort to provide a Unix socket in the path that can be
used to issue commands to the running process. See Section
1.10 for more details.

config daemon

Forks as a daemon (snort -D).

config decode_data_link

Decodes Layer2 headers (snort -e).

config default_rule_state: <state>

Global configuration directive to enable or disable the loading
of rules into the detection engine. Default (with or without di-
rective) is enabled. Specify disabled to disable loading rules.

config dag: <type>

Selects the type of DAQ to instantiate. The DAQ with the high-
est version of the given type is selected if there are multiple of
the same type (this includes any built-in DAQs).

config dag.mode: <mode>

Select the DAQ mode: passive, inline, or read-file. Not all
DAQs support modes. See the DAQ distro README for possi-
ble DAQ modes or list DAQ capabilities for a brief summary.

config dag.var: <name=value>

Set a DAQ specific variable. Snort just passes this information
down to the DAQ. See the DAQ distro README for possible
DAQ variables.

config daq.dir: <dir> Tell Snort where to look for available dynamic DAQ modules.
This can be repeated. The selected DAQ will be the one with
the latest version.

config dag_list: [<dir>] Tell Snort to dump basic DAQ capabilities and exit. You can op-

tionally specify a directory to include any dynamic DAQs from
that directory. You can also precede this option with extra DAQ
directory options to look in multiple directories.

config decode_esp: [enable |

disable]

Enable or disable the decoding of Encapsulated Security Proto-
col (ESP). This is disabled by default. Some networks use ESP
for authentication without encryption, allowing their content to
be inspected. Encrypted ESP may cause some false positives if
this option is enabled.

32

config detection:
<method>]

[search-method

Select type of fast pattern matcher algorithm to use.
e search-method <method>

— Queued match search methods - Matches are

queued until the fast pattern matcher is finished with
the payload, then evaluated. This was found to gen-
erally increase performance through fewer cache
misses (evaluating each rule would generally blow
away the fast pattern matcher state in the cache).

* ac and ac-q - Aho-Corasick Full (high mem-
ory, best performance).

* ac-bnfa and ac-bnfa-q - Aho-Corasick Bi-
nary NFA (low memory, high performance)

* lowmem and lowmem-g - Low Memory Key-
word Trie (low memory, moderate perfor-
mance)

* ac-split - Aho-Corasick Full with ANY-
ANY port group evaluated separately (low
memory, high performance). Note this
is shorthand for search-method ac,
split-any-any

* intel-cpm - Intel CPM library (must have
compiled Snort with location of libraries to en-
able this)

— No queue search methods - The ’nq” option spec-

ifies that matches should not be queued and evalu-
ated as they are found.

* ac-nqg - Aho-Corasick Full (high memory, best
performance).

* ac-bnfa-nqg - Aho-Corasick Binary NFA (low
memory, high performance). This is the default
search method if none is specified.

* lowmem-ng - Low Memory Keyword Trie (low
memory, moderate performance)

— Other search methods (the above are considered su-

perior to these)

* ac-std - Aho-Corasick Standard (high mem-
ory, high performance)

* acs - Aho-Corasick Sparse (high memory,
moderate performance)

* ac-banded - Aho-Corasick Banded (high
memory, moderate performance)

* ac-sparsebands - Aho-Corasick Sparse-
Banded (high memory, moderate performance)

33

config detection:
[search-optimize]
<int>]

[split-any-any]
[max-pattern-len

Other options that affect fast pattern matching.

e split-any-any

— A memory/performance tradeoff. By default, ANY-

ANY port rules are added to every non ANY-ANY
port group so that only one port group rule eval-
uation needs to be done per packet. Not putting
the ANY-ANY port rule group into every other port
group can significantly reduce the memory footprint
of the fast pattern matchers if there are many ANY-
ANY port rules. But doing so may require two port
group evaluations per packet - one for the specific
port group and one for the ANY-ANY port group,
thus potentially reducing performance. This option
is generic and can be used with any search-method
but was specifically intended for use with the ac
search-method where the memory footprint is sig-
nificantly reduced though overall fast pattern per-
formance is better than ac-bnfa. Of note is that
the lower memory footprint can also increase per-
formance through fewer cache misses. Default is
not to split the ANY-ANY port group.

e search-optimize

— Optimizes fast pattern memory when used with

search-method ac or ac-split by dynamically
determining the size of a state based on the total
number of states. When used with ac-bnfa, some
fail-state resolution will be attempted, potentially
increasing performance. Default is not to optimize.

e max-pattern-len <integer>

— This is a memory optimization that specifies the

maximum length of a pattern that will be put in the
fast pattern matcher. Patterns longer than this length
will be truncated to this length before inserting into
the pattern matcher. Useful when there are very
long contents being used and truncating the pattern
won’t diminish the uniqueness of the patterns. Note
that this may cause more false positive rule evalu-
ations, i.e. rules that will be evaluated because a
fast pattern was matched, but eventually fail, how-
ever CPU cache can play a part in performance so a
smaller memory footprint of the fast pattern matcher
can potentially increase performance. Default is to
not set a maximum pattern length.

34

config detection:
[no_stream_inserts]
[max_queue_events <int>]
[enable-single-rule-group]
[bleedover-port-limit]

Other detection engine options.
e no_stream_inserts

— Specifies that stream inserted packets should not be
evaluated against the detection engine. This is a po-
tential performance improvement with the idea that
the stream rebuilt packet will contain the payload
in the inserted one so the stream inserted packet
doesn’t need to be evaluated. Default is to inspect
stream inserts.

e max_queue_events <integer>

— Specifies the maximum number of matching fast-
pattern states to queue per packet. Default is 5
events.

® cnable-single-rule-group

— Putall rules into one port group. Not recommended.
Default is not to do this.

e bleedover-port-limit

— The maximum number of source or destination
ports designated in a rule before the rule is consid-
ered an ANY-ANY port group rule. Defaultis 1024.

35

config detection:
[debug-print-nocontent-rule-tests]
[debug-print-rule-group-build-details
[debug-print-rule-groups-uncompiled]
[debug-print-rule-groups-compiled]
[
[

[debug]

debug-print-fast-pattern]
bleedover-warnings-enabled]

Options for detection engine debugging.
e debug

— Prints fast pattern information for a particular port
group.

debug-print-nocontent-rule-tests

— Prints port group information during packet evalua-
tion.

debug-print-rule-group-build-details

— Prints port group information during port group
compilation.

debug-print-rule-groups-uncompiled
— Prints uncompiled port group information.
e debug-print-rule-groups-compiled
— Prints compiled port group information.
e debug-print-fast-pattern

— For each rule with fast pattern content, prints infor-
mation about the content being used for the fast pat-
tern matcher.

bleedover-warnings-enabled

— Prints a warning if the number of source or
destination ports used in a rule exceed the
bleedover-port-limit forcing the rule to be
moved into the ANY-ANY port group.

config disable_decode_alerts

Turns off the alerts generated by the decode phase of Snort.

config disable_inline_init_failopen

Disables failopen thread that allows inline traffic to pass
while Snort is starting up. Only useful if Snort was
configured with —enable-inline-init-failopen. (snort
--disable-inline-init-failopen)

config disable_ipopt_alerts

Disables IP option length validation alerts.

config disable_tcpopt_alerts

Disables option length validation alerts.

config
disable_tcpopt_experimental_alerts

Turns off alerts generated by experimental TCP options.

config disable_tcpopt_obsolete_alerts| Turns off alerts generated by obsolete TCP options.
config disable_tcpopt_ttcp_alerts Turns off alerts generated by T/TCP options.
config disable_ttcp-alerts Turns off alerts generated by T/TCP options.
config dump_chars_only Turns on character dumps (snort -C).

config dump_payload Dumps application layer (snort -d).
config dump_payload_verbose Dumps raw packet starting at link layer (snort -X).
config enable_decode_drops Enables the dropping of bad packets identified by decoder (only

applicable in inline mode).

config enable_decode_oversized_alerts

Enable alerting on packets that have headers containing length
fields for which the value is greater than the length of the packet.

36

config enable_decode_oversized_drops

Enable dropping packets that have headers containing length
fields for which the value is greater than the length of the packet.
enable_decode_oversized_alerts must also be enabled for
this to be effective (only applicable in inline mode).

config enable_deep_teredo_inspection

Snort’s packet decoder only decodes Teredo (IPv6 over UDP
over IPv4) traffic on UDP port 3544. This option makes Snort
decode Teredo traffic on all UDP ports.

config enable_ipopt_drops

Enables the dropping of bad packets with bad/truncated IP op-
tions (only applicable in inline mode).

config enablempls_multicast

Enables support for MPLS multicast. This option is needed
when the network allows MPLS multicast traffic. When this
option is off and MPLS multicast traffic is detected, Snort will
generate an alert. By default, it is off.

config enable_mpls_overlapping_ip

Enables support for overlapping IP addresses in an MPLS net-
work. In a normal situation, where there are no overlapping
IP addresses, this configuration option should not be turned on.
However, there could be situations where two private networks
share the same IP space and different MPLS labels are used to
differentiate traffic from the two VPNSs. In such a situation, this
configuration option should be turned on. By default, it is off.

config enable_tcpopt_drops

Enables the dropping of bad packets with bad/truncated TCP
option (only applicable in inline mode).

config
enable_tcpopt_experimental_drops

Enables the dropping of bad packets with experimental TCP op-
tion. (only applicable in inline mode).

config enable_tcpopt_obsolete_drops

Enables the dropping of bad packets with obsolete TCP option.
(only applicable in inline mode).

config enable_tcpopt_ttcp-drops

Enables the dropping of bad packets with T/TCP option. (only
applicable in inline mode).

config enable_ttcp-_drops

Enables the dropping of bad packets with T/TCP option. (only
applicable in inline mode).

config event_filter: memcap Set global memcap in bytes for thresholding. Default is
<bytes> 1048576 bytes (1 megabyte).

config event_queue: [max_queue Specifies conditions about Snort’s event queue. You can use the
<num>] [log <num>] [order_events following options:

<order>]

e max_queue <integer> (max events supported)
e log <integer> (number of events to log)

e order_events [priority|content_length] (how to
order events within the queue)

See Section 2.4.4 for more information and examples.

config flowbits_size: <num-bits>

Specifies the maximum number of flowbit tags that can be used
within a rule set. The default is 1024 bits and maximum is 2048.

config ignore_ports: <proto> Specifies ports to ignore (useful for ignoring noisy NFS traffic).

<port-list> Specify the protocol (TCP, UDP, IP, or ICMP), followed by a
list of ports. Port ranges are supported.

config interface: <iface> Sets the network interface (snort -1i).

37

config ipv6_frag:
[bsd_icmp_frag-alert on|off]

[, bad_-ipv6_frag_alert on|off]
[, frag_timeout <secs>] [,
max_frag_sessions <max-track>]

The following options can be used:

e bsd_icmp_frag_alert on|off (Specify whether or not
to alert. Default is on)

e bad_ipv6_frag_alert on|off (Specify whether or not
to alert. Default is on)

e frag_timeout <integer> (Specify amount of time in
seconds to timeout first frag in hash table)

e max_frag_sessions <integer> (Specify the number
of fragments to track in the hash table)

config logdir: <dir>

Sets the logdir (snort -1).

config log_ipvé6_extra_data

Set Snort to log IPv6 source and destination addresses as uni-
fied2 extra data events.

config max_attribute_hosts: <hosts>

Sets a limit on the maximum number of hosts to read from
the attribute table. Minimum value is 32 and the maximum is
524288 (512k). The default is 10000. If the number of hosts
in the attribute table exceeds this value, an error is logged and
the remainder of the hosts are ignored. This option is only sup-
ported with a Host Attribute Table (see section 2.7).

config max_attribute_services_per_host

<hosts>

:Sets a per host limit on the maximum number of services to

read from the attribute table. Minimum value is 1 and the max-
imum is 65535. The default is 100. For a given host, if the
number of services in the attribute table exceeds this value, an
error is logged and the remainder of the services for that host
are ignored. This option is only supported with a Host Attribute
Table (see section 2.7).

config max_mpls_labelchain_len:
<num-hdrs>

Sets a Snort-wide limit on the number of MPLS headers a
packet can have. Its default value is -1, which means that there
is no limit on label chain length.

config max_ip6_extensions:
<num-extensions>

Sets the maximum number of IPv6 extension headers that Snort
will decode. Default is 8.

config min_ttl: <ttl>

Sets a Snort-wide minimum ttl to ignore all traffic.

config mpls_payload_type:
ipvéd|ipvé|ethernet

Sets a Snort-wide MPLS payload type. In addition to ipv4, ipv6
and ethernet are also valid options. The default MPLS payload
type is ipv4

config no_promisc

Disables promiscuous mode (snort -p).

config nolog

Disables logging. Note: Alerts will still occur. (snort -N).

config nopcre

Disables pcre pattern matching.

config obfuscate

Obfuscates IP Addresses (snort -0).

config order: <order>

Changes the order that rules are evaluated, e.g.: pass alert log
activation.

config pcre_match_limit:
<integer>

Restricts the amount of backtracking a given PCRE option. For
example, it will limit the number of nested repeats within a pat-
tern. A value of -1 allows for unlimited PCRE, up to the PCRE
library compiled limit (around 10 million). A value of O results
in no PCRE evaluation. The snort default value is 1500.

config pcre_match_limit_recursion:

<integer>

Restricts the amount of stack used by a given PCRE option. A
value of -1 allows for unlimited PCRE, up to the PCRE library
compiled limit (around 10 million). A value of 0 results in no
PCRE evaluation. The snort default value is 1500. This option
is only useful if the value is less than the pcre_match_limit

config pkt_count: <N>

Exits after N packets (snort -n).

38

config policy_version:
<base-version-string>
[<binding-version-string>]

Supply versioning information to configuration files. Base ver-
sion should be a string in all configuration files including in-
cluded ones. In addition, binding version must be in any file
configured with config binding. This option is used to avoid
race conditions when modifying and loading a configuration
within a short time span - before Snort has had a chance to load
a previous configuration.

config profile_preprocs

Print statistics on preprocessor performance. See Section 2.5.2
for more details.

config profile_rules

Print statistics on rule performance. See Section 2.5.1 for more
details.

config protected_content:
md5 | sha256|sha512

Specifies a default algorithm to use for protected_content rules.

config quiet

Disables banner and status reports (snort -g). NOTE: The
command line switch —-q takes effect immediately after pro-
cessing the command line parameters, whereas using config
quiet in snort.conf takes effect when the configuration line in
snort.conf is parsed. That may occur after other configuration
settings that result in output to console or syslog.

config reference: <ref>

Adds a new reference system to Snort, e.g.: myref
http://myurl.com/?id=

config reference_net <cidr>

For IP obfuscation, the obfuscated net will be used if the packet
contains an IP address in the reference net. Also used to de-
termine how to set up the logging directory structure for the
session post detection rule option and ASCII output plugin -
an attempt is made to name the log directories after the IP ad-
dress that is not in the reference net.

config response: [attempts
<count>] [, device <dev>]

Set the number of strafing attempts per injected response and/or
the device, such as ethO, from which to send responses. These
options may appear in any order but must be comma separated.
The are intended for passive mode.

config set_gid: <gid>

Changes GID to specified GID (snort -g).

config set_uid: <uid>

Sets UID to <id> (snort -u).

config show_year

Shows year in timestamps (snort -y).

config snaplen: <bytes>

Set the snaplength of packet, same effect as -P <snaplen> or
--snaplen <snaplen> options.

config so_rule_memcap: <bytes>

Set global memcap in bytes for so rules that dynamically allo-
cate memory for storing session data in the stream preproces-
sor. A value of 0 disables the memcap. Default is 0. Maximum
value is the maximum value an unsigned 32 bit integer can hold
which is 4294967295 or 4GB.

config stateful

Sets assurance mode for stream (stream is established).

config tagged_packet_limit:
<max-tag>

When a metric other than packets is used in a tag option in
a rule, this option sets the maximum number of packets to be
tagged regardless of the amount defined by the other metric.
See Section 3.7.5 on using the tag option when writing rules
for more details. The default value when this option is not con-
figured is 256 packets. Setting this option to a value of 0 will
disable the packet limit.

config threshold: memcap <bytes>

Set global memcap in bytes for thresholding. Default is
1048576 bytes (1 megabyte). (This is deprecated. Use config
event_filter instead.)

config umask: <umask>

Sets umask when running (snort -m).

config utc

Uses UTC instead of local time for timestamps (snort -U).

config verbose

Uses verbose logging to STDOUT (snort -v).

39

config vlan_agnostic Causes Snort to ignore vlan headers for the purposes of con-
nection and frag tracking. This option is only valid in the base
configuration when using multiple configurations, and the de-
fault is off.

config address_space_agnostic Causes Snort to ignore DAQ address space ID for the purposes
of connection and frag tracking. This option is only valid in the
base configuration when using multiple configurations, and the

default is off.
config policy_mode: Sets the policy mode to either passive, inline or
taplinlinelinline_test inline_test.
config disable_replace Disables content replace option. Default behaviour is to replace
content.
config tunnel_verdicts: By default, whitelist and blacklist verdicts are handled inter-
gtplteredo|6ind|4in6 nally by Snort for GTP, Teredo, 6in4 and 4in6 encapsulated traf-

fic. This means Snort actually gives the DAQ a pass or block
verdict instead. This is to workaround cases where the DAQ
would apply the verdict to the whole tunnel instead of the in-
dividual session within the tunnel. If your DAQ decodes GTP,
Teredo, 6in4 or 4in6 correctly, setting this config will allow the
whitelist or blacklist verdict to go to the DAQ. There is a mod-
est performance boost by doing this where possible since Snort
won’t see the remaining packets on the session.

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. They allow the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snort fairly easily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. The packet can be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured using the preprocessor keyword. The format of the preprocessor directive
in the Snort config file is:

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmentation module for Snort. Frag3 is designed with the following
goals:

1. Fast execution with less complex data management.

2. Target-based host modeling anti-evasion techniques.

Frag3 uses the sfxhash data structure and linked lists for data handling internally which allows it to have much more
predictable and deterministic performance in any environment which should aid us in managing heavily fragmented
environments.

Target-based analysis is a relatively new concept in network-based intrusion detection. The idea of a target-based
system is to model the actual targets on the network instead of merely modeling the protocols and looking for attacks
within them. When IP stacks are written for different operating systems, they are usually implemented by people
who read the RFCs and then write their interpretation of what the RFC outlines into code. Unfortunately, there are
ambiguities in the way that the RFCs define some of the edge conditions that may occur and when this happens
different people implement certain aspects of their IP stacks differently. For an IDS this is a big problem.

40

In an environment where the attacker can determine what style of IP defragmentation is being used on a particular
target, the attacker can try to fragment packets such that the target will put them back together in a specific manner
while any passive systems trying to model the host traffic have to guess which way the target OS is going to handle the
overlaps and retransmits. As I like to say, if the attacker has more information about the targets on a network than the
IDS does, it is possible to evade the IDS. This is where the idea for “target-based IDS” came from. For more detail on
this issue and how it affects IDS, check out the famous Ptacek & Newsham paper at http://www.snort.org/docs/
idspaper/.

The basic idea behind target-based IDS is that we tell the IDS information about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on information about how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this very topic in 2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implementations handled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it out at http://www.icir.org/vern/papers/activemap-o0ak03.pdf.

We can also present the IDS with topology information to avoid TTL-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this information we can start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a target-based module within Snort to test this idea.

Frag 3 Configuration

There are at least two preprocessor directives required to activate frag3, a global configuration directive and an engine
instantiation. There can be an arbitrary number of engines defined at startup with their own configuration, but only
one global configuration.

Global Configuration

e Preprocessor name: frag3_global

o Available options: NOTE: Global configuration options are comma separated.

— max_frags <number> - Maximum simultaneous fragments to track. Default is 8§192.
— memcap <bytes> - Memory cap for self preservation. Default is 4MB.

— prealloc_memcap <bytes> - alternate memory management mode, use preallocated fragment nodes
based on a memory cap (faster in some situations).

— prealloc_frags <number> - Alternate memory management mode, use preallocated fragment nodes
(faster in some situations).

— disabled - This optional keyword is allowed with any policy to avoid packet processing. This option
disables the preprocessor for this config, but not for other instances of multiple configurations. Use the
disable keyword in the base configuration to specify values for the options memcap, prealloc_memcap,
and prealloc_frags without having the preprocessor inspect traffic for traffic applying to the base con-
figuration. The other options are parsed but not used. Any valid configuration may have “disabled” added
to it.

Engine Configuration

e Preprocessor name: frag3_engine

e Available options: NOTE: Engine configuration options are space separated.
— timeout <seconds> - Timeout for fragments. Fragments in the engine for longer than this period will
be automatically dropped. Default is 60 seconds.

— min_ttl <value> - Minimum acceptable TTL value for a fragment packet. Default is 1. The accepted
range for this option is 1 - 255.

— detect_anomalies - Detect fragment anomalies.

41

— bind_to <ip_list>-IP Listto bind this engine to. This engine will only run for packets with destination

Format

addresses contained within the IP List. Default value is all.

overlap_limit <number> - Limits the number of overlapping fragments per packet. The default is ”0”
(unlimited). This config option takes values equal to or greater than zero. This is an optional parameter.
detect_anomalies option must be configured for this option to take effect.

min_fragment_length <number> - Defines smallest fragment size (payload size) that should be consid-
ered valid. Fragments smaller than or equal to this limit are considered malicious and an event is raised,
if detect_anomalies is also configured. The default is ”0” (unlimited), the minimum is ”0”. This is an
optional parameter. detect_anomalies option must be configured for this option to take effect.

policy <type> - Select a target-based defragmentation mode. Available types are first, last, bsd, bsd-
right, linux, windows and solaris. Default type is bsd.

The Paxson Active Mapping paper introduced the terminology frag3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more mappings and would like to add to this list
please feel free to send us an email!

| Platform | Type |

AIX 2 BSD
AIX 43893 BSD
Cisco IOS Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) linux
OpenBSD (version unknown) linux
OpenVMS 7.1 BSD
OS/2 (version unknown) BSD
OSF1 V3.0 BSD
OSF1 V3.2 BSD
OSF1 v4.0,5.0,5.1 BSD
SunOS 4.1.4 BSD
SunOS 5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) | Windows

Note in the advanced configuration below that there are three engines specified running with Linux, first and last
policies assigned. The first two engines are bound to specific IP address ranges and the last one applies to all other
traffic. Packets that don’t fall within the address requirements of the first two engines automatically fall through to the

third one.

42

Basic Configuration

preprocessor frag3_global
preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192

preprocessor frag3_engine: policy linux bind_to 192.168.1.0/24

preprocessor frag3_engine: policy first bind_to [10.1.47.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last detect_anomalies

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anomalies. Its event output is packet-based so it will work with
all output modes of Snort. Read the documentation in the doc/signatures directory with filenames that begin with
“123-” for information on the different event types.

2.2.2 Session

The Session preprocessor is a global stream session management module for Snort. It is derived from the session
management functions that were part of the Stream5 preprocessor.

Since Session implements part of the functionality and API that was previously in Stream5 it cannot be used with
Stream5 but must be used in conjunction with the new Stream preprocessor. Similarly, due to the API changes, the
other preprocessors in Snort 2.9.7 work only with the new Session and Stream preprocessers.

Session API

Session provides an API to enable the creation and management of the session control block for a flow and the
management of data and state that may be associated with that flow by service and application preprocessors (most of
these functions were previously supported by the Stream5 API). These methods are called to identify sessions that may
be ignored (large data transfers, etc), and update the identifying information about the session (application protocol,
direction, etc) that can later be used by rules. API methods to enable preprocessors to register for dispatch for ports
and services for which they should be called to process the packet have been added to the Session API. Session is
required for the use of the *flow’ and "flowbits’ keywords.

Session Global Configuration

Global settings for the Session preprocessor.

preprocessor stream5_global: \
[track_tcp <yes|no>], [max_tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[track_ip <yes|no>], [max_ip <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <number bytes>], [disabled], \
[enable_hal]

43

Option

Description

track_tcp <yes|no>

Track sessions for TCP. The default is “’yes”.

max_tcp <num sessions>

Maximum simultaneous TCP sessions tracked. The default is ”262144”, maxi-
mum is ”1048576”, minimum is 2.

memcap <num bytes>

Memcap for TCP packet storage. The default is 8388608 (§8MB), maximum is
71073741824 (1GB), minimum is ”32768” (32KB).

track_udp <yes|no>

Track sessions for UDP. The default is “’yes”.

max-udp <num sessions>

Maximum simultaneous UDP sessions tracked. The default is ”131072”, maxi-
mum is ”1048576”, minimum is 1.

track_icmp <yes|no>

Track sessions for ICMP. The default is "no”.

max_icmp <num sessions>

Maximum simultaneous ICMP sessions tracked. The default is ”65536”, maxi-
mum is ”1048576”, minimum is 1.

track_ip <yes|no>

Track sessions for IP. The default is "no”. Note that "IP” includes all non-
TCP/UDP traffic over IP including ICMP if ICMP not otherwise configured.

max-ip <num sessions>

Maximum simultaneous IP sessions tracked. The default is ”16384”, maximum is
71048576, minimum is ”’1”.

disabled

Option to disable the stream5 tracking. By default this option is turned off. When
the preprocessor is disabled only the options memcap, max_tcp, max_udp and
max_icmp are applied when specified with the configuration.

flush_on_alert

Backwards compatibility. Flush a TCP stream when an alert is generated on that
stream. The default is set to off.

show_rebuilt_packets

Print/display packet after rebuilt (for debugging). The default is set to off.

prune_log_.max <num bytes>

Print a message when a session terminates that was consuming more than the
specified number of bytes. The default is ”1048576” (1MB), minimum can be
either ”0” (disabled) or if not disabled the minimum is ”’1024” and maximum is
”1073741824”.

enable_ha

Enable High Availability state sharing. The default is set to off.

Session HA Configuration

Configuration for HA session state sharing.

preprocessor streamb_ha:

[min_session_lifetime <num millisecs>], \

[min_sync_interval <num millisecs>], [startup_input_file <filename>], \
[runtime_output_file <filename>], [use_side_channel]

Option

Description

min_session_lifetime <num millisecs>

Minimum session liftime in milliseconds. HA update messages will only be gen-
erated once a session has existed for at least this long. The default is 0, the mini-
mum is 0, and the maximum is 65535.

min_sync_interval <num millisecs>

Minimum synchronization interval in milliseconds. HA update messages will not
be generated more often than once per interval on a given session. The default is
0, the minimum is 0, and the maximum is 65535.

startup_input_file <filename>

The name of a file for snort to read HA messages from at startup.

runtime_output_file <filename>

The name of a file to which Snort will write all HA messages that are generated
while it is running.

use_side_channel

Indicates that all HA messages should also be sent to the side channel for process-
ing.

Example Configurations

1. This example configuration sets a maximum number of TCP session control blocks to 8192, enables tracking
of TCP and UPD sessions, and disables tracking of ICMP sessions. The number of UDP session control blocks

will be set to the compiled default.

44

preprocessor stream5_global: \
max_tcp 8192, track_tcp yes, track_udp yes, track_icmp no

preprocessor stream5_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2.2.3 Stream

The Stream preprocessor is a target-based TCP reassembly module for Snort. It is capable of tracking sessions for
both TCP and UDP.

Transport Protocols
TCP sessions are identified via the classic TCP “connection”. UDP sessions are established as the result of a series of

UDP packets from two end points via the same set of ports. ICMP messages are tracked for the purposes of checking
for unreachable and service unavailable messages, which effectively terminate a TCP or UDP session.

Target-Based
Stream, like Frag3, introduces target-based actions for handling of overlapping data and other TCP anomalies. The

methods for handling overlapping data, TCP Timestamps, Data on SYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream are the results of extensive research with many target operating systems.

Stream API
Stream supports the modified Stream API that is now focused on functions specific to reassembly and protocol aware
flushing operations. Session management functions have been moved to the Session APIL. The remaining API functions

enable other protocol normalizers/preprocessors to dynamically configure reassembly behavior as required by the
application layer protocol.

Anomaly Detection
TCP protocol anomalies, such as data on SYN packets, data received outside the TCP window, etc are configured via

the detect_anomalies option to the TCP configuration. Some of these anomalies are detected on a per-target basis.
For example, a few operating systems allow data in TCP SYN packets, while others do not.

Protocol Aware Flushing
Protocol aware flushing of HTTP, SMB and DCE/RPC can be enabled with this option:
config paf_max: <max-pdu>

where <max-pdu> is between zero (off) and 63780. This allows Snort to statefully scan a stream and reassemble a
complete PDU regardless of segmentation. For example, multiple PDUs within a single TCP segment, as well as one
PDU spanning multiple TCP segments will be reassembled into one PDU per packet for each PDU. PDUs larger than
the configured maximum will be split into multiple packets.

45

Stream TCP Configuration

Provides a means on a per IP address target to configure TCP policy. This can have multiple occurrences, per policy
that is bound to an IP address or network. One default policy must be specified, and that policy is not bound to an IP
address or network.

preprocessor stream5_tcp: \

[log_asymmetric_traffic <yes|no>], \

[bind_to <ip_addr>], \

[timeout <number secs>], [policy <policy_id>], \

[overlap_limit <number>], [max_window <number>], \

[require_3whs [<number secs>]], [detect_anomalies], \
[check_session_hijacking], [use_static_footprint_sizes], \
[dont_store_large_packets], [dont_reassemble_async], \

[max_queued_bytes <bytes>], [max_queued_segs <number segs>], \
[small_segments <number> bytes <number> [ignore_ports number [number]*]],
[ports <client|server|both> <all|number|!number [number]* [!number]*>], \
[protocol <client|server|both> <all|service name [service name]*>], \

[

\

ignore_any_rules], [flush_factor <number segs>]

Option Description

bind_to <ip_addr> IP address or network for this policy. The default is set to any.

timeout <num seconds> Session timeout. The default is ”30”, the minimum is ’1”, and the maxi-
mum is "86400” (approximately 1 day).

The Operating System policy for the target OS. The policy_id can be one
of the following:

policy <policy_id>

Policy Name | Operating Systems.

first Favor first overlapped segment.

last Favor last overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x and
newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows
95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

overlap_limit <number>

Limits the number of overlapping packets per session. The default is 0"
(unlimited), the minimum is ’0”, and the maximum is ”255”.

max_window <number>

Maximum TCP window allowed. The default is ”0” (unlimited), the
minimum is ”’0”, and the maximum is 1073725440 (65535 left shift
14). That is the highest possible TCP window per RFCs. This option is
intended to prevent a DoS against Stream by an attacker using an abnor-
mally large window, so using a value near the maximum is discouraged.

require_3whs [<number
seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/ACK hand-
shake. The default is set to off. The optional number of seconds speci-
fies a startup timeout. This allows a grace period for existing sessions to
be considered established during that interval immediately after Snort is
started. The default is ”’0” (don’t consider existing sessions established),
the minimum is 70, and the maximum is "86400” (approximately 1
day).

46

detect_anomalies

Detect and alert on TCP protocol anomalies. The default is set to off.

check_session_hijacking

Check for TCP session hijacking. This check validates the hardware
(MAC) address from both sides of the connect — as established on the
3-way handshake against subsequent packets received on the session. If
an ethernet layer is not part of the protocol stack received by Snort, there
are no checks performed. Alerts are generated (per ’detect_anomalies’
option) for either the client or server when the MAC address for one side
or the other does not match. The default is set to off.

use_static_footprint_sizes

Use static values for determining when to build a reassembled packet to
allow for repeatable tests. This option should not be used production
environments. The default is set to off.

dont_store_large_packets

Performance improvement to not queue large packets in reassembly
buffer. The default is set to off. Using this option may result in missed
attacks.

dont_reassemble_async

Don’t queue packets for reassembly if traffic has not been seen in both
directions. The default is set to queue packets.

max_queued_bytes <bytes>

Limit the number of bytes queued for reassembly on a given TCP session
to bytes. Default is ”1048576” (1MB). A value of ”0” means unlimited,
with a non-zero minimum of ”’1024”, and a maximum of ”1073741824”
(1GB). A message is written to console/syslog when this limit is en-
forced.

max_queued_segs <num>

Limit the number of segments queued for reassembly on a given TCP
session. The default is 72621, derived based on an average size of 400
bytes. A value of ”0” means unlimited, with a non-zero minimum of
727, and a maximum of ”1073741824” (1GB). A message is written to
console/syslog when this limit is enforced.

small_segments <number>

bytes <number> [ignore_ports

<number (s)>]

Configure the maximum small segments queued. This feature requires
that detect_anomalies be enabled. The first number is the number of con-
secutive segments that will trigger the detection rule. The default value
is 7’0" (disabled), with a maximum of ”2048”. The second number is
the minimum bytes for a segment to be considered ’small”. The default
value is ”0” (disabled), with a maximum of ”2048”. ignore_ports is op-
tional, defines the list of ports in which will be ignored for this rule. The
number of ports can be up to ”65535”. A message is written to con-
sole/syslog when this limit is enforced.

ports <client|server|both>
<all|number (s) | 'number (s) >

Specify the client, server, or both and list of ports in which to perform
reassembly. This can appear more than once in a given config. The de-
fault settings are ports client 21 23 25 42 53 80 110 111 135
136 137 139 143 445 513 514 1433 1521 2401 3306. The mini-
mum port allowed is ”’1” and the maximum allowed is ”65535”. To dis-
able reassembly for a port specifiy the port number preceeded by an ’!’,
e.g. 18080 125

protocol
<client|server|both>
<all|service name(s)>

Specify the client, server, or both and list of services in which to perform
reassembly. This can appear more than once in a given config. The
default settings are ports client ftp telnet smtp nameserver
dns http pop3 sunrpc dcerpc netbios-ssn imap login shell

mssql oracle cvs mysgl. The service names can be any of those
used in the host attribute table (see 2.7), including any of the internal
defaults (see 2.7.5) or others specific to the network.

ignore_any_rules

Don’t process any -> any (ports) rules for TCP that attempt to match
payload if there are no port specific rules for the src or destination port.
Rules that have flow or flowbits will never be ignored. This is a perfor-
mance improvement and may result in missed attacks. Using this does
not affect rules that look at protocol headers, only those with content,
PCRE, or byte test options. The default is ”off””. This option can be used
only in default policy.

47

flush_factor Useful in ips mode to flush upon seeing a drop in segment size after N
segments of non-decreasing size. The drop in size often indicates an end
of request or response.

|

ANOTE

If no options are specified for a given TCP policy, that is the default TCP policy. If only a bind_to option is
used with no other options that TCP policy uses all of the default values.

Stream UDP Configuration

Configuration for UDP session tracking. Since there is no target based binding, there should be only one occurrence
of the UDP configuration.

preprocessor streamb_udp: [timeout <number secs>], [ignore_any_rules]

Option Description

timeout <num seconds> | Session timeout. The default is ”30”, the minimum is ’1”, and the maximum is
”86400” (approximately 1 day).

ignore_any_rules Don’t process any -> any (ports) rules for UDP that attempt to match payload
if there are no port specific rules for the src or destination port. Rules that have
flow or flowbits will never be ignored. This is a performance improvement and
may result in missed attacks. Using this does not affect rules that look at protocol
headers, only those with content, PCRE, or byte test options. The default is ~off”.

NANOTE

With the ignore_any_rules option, a UDP rule will be ignored except when there is another port specific rule
that may be applied to the traffic. For example, if a UDP rule specifies destination port 53, the ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT to any other source or destination port. A list
of rule SIDs affected by this option are printed at Snort’s startup.

A\NOTE

With the ignore_any_rules option, if a UDP rule that uses any —> any ports includes either flow or flowbits,
the ignore_any_rules option is effectively pointless. Because of the potential impact of disabling a flowbits
rule, the ignore_any _rules option will be disabled in this case.

Stream ICMP Configuration

Configuration for ICMP session tracking. Since there is no target based binding, there should be only one occurrence
of the ICMP configuration.

|

ANOTE

ICMP is currently untested, in minimal code form and is NOT ready for use in production networks. It is not
turned on by default.

preprocessor streamb_icmp: [timeout <number secs>]

Option Description
timeout <num seconds> | Session timeout. The default is 30, the minimum is ”1”, and the maximum is
”86400” (approximately 1 day).

48

Stream IP Configuration

Configuration for IP session tracking. Since there is no target based binding, there should be only one occurrence of
the IP configuration.

ANOTE

”IP” includes all non-TCP/UDP traffic over IP including ICMP if ICMP not otherwise configured. It is not
turned on by default.

preprocessor streamb_ip: [timeout <number secs>]

Option Description
timeout <num seconds> | Session timeout. The default is ”30”, the minimum is ’1”, and the maximum is
”86400” (approximately 1 day).

Example Configurations

1. This example configuration is the default configuration in snort.conf and can be used for repeatable tests of
stream reassembly in readback mode.

preprocessor stream5_global: \
max_tcp 8192, track_tcp yes, track_udp yes, track_icmp no

preprocessor streamb_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2. This configuration maps two network segments to different OS policies, one for Windows and one for Linux,
with all other traffic going to the default policy of Solaris.

preprocessor stream5_global: track_tcp yes

preprocessor stream5_tcp: bind_to 192.168.1.0/24, policy windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy linux
preprocessor streamb_tcp: policy solaris

2.2.4 sfPortscan

The sfPortscan module, developed by Sourcefire, is designed to detect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker determines what types of network protocols or services a host
supports. This is the traditional place where a portscan takes place. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported by the target; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its intended target, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the nature of legitimate network communications, negative responses
from hosts are rare, and rarer still are multiple negative responses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negative responses.

One of the most common portscanning tools in use today is Nmap. Nmap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to be able to detect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types of Nmap scans:

e TCP Portscan

49

e UDP Portscan

e P Portscan

These alerts are for one—one portscans, which are the traditional types of scans; one host scans multiple ports on
another host. Most of the port queries will be negative, since most hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy portscans:

e TCP Decoy Portscan
e UDP Decoy Portscan

e [P Decoy Portscan

Decoy portscans are much like the Nmap portscans described above, only the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactic helps hide the true identity of the attacker.

sfPortscan alerts for the following types of distributed portscans:

e TCP Distributed Portscan
e UDP Distributed Portscan

e [P Distributed Portscan

These are many—one portscans. Distributed portscans occur when multiple hosts query one host for open services.
This is used to evade an IDS and obfuscate command and control hosts.

ANOTE

Negative queries will be distributed among scanning hosts, so we track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

e TCP Portsweep
e UDP Portsweep
o [P Portsweep

e ICMP Portsweep

These alerts are for one—many portsweeps. One host scans a single port on multiple hosts. This usually occurs when
a new exploit comes out and the attacker is looking for a specific service.

ANOTE

The characteristics of a portsweep scan may not result in many negative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not see many negati