
Migration Guide for the Next
Scripting Language
Gustaf Neumann
<neumann@wu-wien.ac.at>
version 2.0.0, June 2013

Table of Contents

JavaScript must be enabled in your browser to display the table of contents.

Abstract

This document describes the differences between the Next Scripting Language
Framework and XOTcl 1. In particular, it presents a migration guide from XOTcl 1 to
NX, and presents potential incompatibilities beween XOTcl 1 and XOTcl 2.

The Next Scripting Language (NX) is a successor of XOTcl 1 and is based on 10 years
of experience with XOTcl in projects containing several hundert thousand lines of code.
While XOTcl was the first language designed to provide language support for design
patterns, the focus of the Next Scripting Framework and NX are on combining this
with Language Oriented Programming. In many respects, NX was designed to ease the
learning of the language by novices (by using a more mainstream terminology, higher
orthogonality of the methods, less predefined methods), to improve maintainability
(remove sources of common errors) and to encourage developer to write better
structured programs (to provide interfaces) especially for large projects, where many
developers are involved.

The Next Scripting Language is based on the Next Scripting Framework which was
developed based on the notion of language oriented programming. The Next Scripting
Frameworks provides C-level support for defining and hosting multiple object systems
in a single Tcl interpreter. The whole definition of NX is fully scripted (e.g. defined in
nx.tcl). The Next Scripting Framework is shipped with three language definitions,
containing NX and XOTcl 2. Most of the existing XOTcl 1 programs can be used without
modification in the Next Scripting Framework by using XOTcl 2. The Next Scripting
Framework requires Tcl 8.5 or newer.

Although NX is fully scripted (as well as XOTcl 2), our benchmarks show that scripts
based on NX are often 2 or 4 times faster than the counterparts in XOTcl 1. But speed was
not the primary focus on the Next Scripting Environment: The goal was primarily to find
ways to repackage the power of XOTcl in an easy to learn environment, highly orthogonal
environment, which is better suited for large projects, trying to reduce maintenance
costs.

We expect that many user will find it attractive to upgrade from XOTcl 1 to XOTcl 2, and
some other users will upgrade to NX. This document focuses mainly on the differences

- 1 -

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

mailto:neumann@wu-wien.ac.at

1.1. Features of NX

between XOTcl 1 and NX, but addresses as well potential incompatibilities between
XOTcl 1 and XOTcl 2. For an introduction to NX, please consult the NX tutorial.

1. Differences Between XOTcl and NX

The Next Scripting Framework supports Language Oriented Programming by providing
means to define potentially multiple object systems with different naming and
functionality in a single interpreter. This makes the Next Scripting Framework a
powerful instrument for defining multiple languages such as e.g. domain specific
languages. This focus differs from XOTcl 1.

Technically, the language framework approach means that the languages implemented
by the Next Scripting Framework (most prominently XOTcl 2 and NX) are typically fully
scripted and can be loaded via the usual Tcl package require mechanism.

Some of the new features below are provided by the Next Scripting Framework, some are
implemented via the script files for XOTcl 2 and NX.

In general, the Next Scripting Language (NX) differs from XOTcl in the following
respects:

1. Stronger Encapsulation: The Next Scripting Language favors a stronger
form of encapsulation than XOTcl. Calling the own methods or accessing the
own instance variables is typographically easier and computationally faster
than these operations on other objects. This behavior is achieved via resolvers,
which make some methods necessary in XOTcl 1 obsolete in NX (especially
for importing instance variables). The encapsulation of NX is stronger than
in XOTcl but still weak compared to languages like C++; a developer can still
access other objects' variables via some idioms, but NX makes accesses to other
objects' variables explicit. The requiredness to make these accesses explicit
should encourage developer to implement well defined interfaces to provide
access to instance variables.

2. Additional Forms of Method Definition and Reuse: The Next Scripting
Language provides much more orthogonal means to define, reuse and
introspect scripted and C-implemented methods.

a. It is possible to use NX alias to register methods under arbitrary
names for arbitrary objects or classes.

b. NX provides means for method protection (method modifiers
public, protected, and private). Therefore developers have to
define explicitly public interfaces in order to use methods from other
objects.

c. One can invoke in NX fully qualified methods to invoke methods
outside the precedence path.

d. One can define in NX hierachical method names (similar to
commands and subcommands, called method ensembles) in a
convenient way to provide extensible, hierarchical naming of methods.

1. Differences Between XOTcl and NX

- 2 -

e. One can use in NX the same interface to query (introspect) C-
implemented and scripted methods/commands.

3. Orthogonal Parameterization: The Next Scripting Language provides an
orthogonal framework for parametrization of methods and objects.

a. In NX, the same argument parser is used for

▪ Scripted Methods

▪ C-implemented methods and Tcl commands

▪ Object Parametrization

b. While XOTcl 1 provided only value-checkers for non-positional
arguments for methods, the Next Scripting Framework provides the
same value checkers for positional and non-positional arguments of
methods, as well as for positional and non-positional configure
parameters (-parameter in XOTcl 1).

c. While XOTcl 1 supported only non-positional arguments at the begin
of the argument list, these can be used now at arbitrary positions.

4. Value Checking:

a. The Next Scripting Language supports checking of the input
parmeters and the return values of scripted and C-implemented
methods and commands.

b. NX provides a set of predefined checkers (like e.g. integer,
boolean, object, …) which can be extended by the applications.

c. Value Checking can be used for single and multi-valued parameters.
One can e.g. define a list of integers with at least one entry by the
parameter specification integer,1..n.

d. Value Checking can be turned on/off globally or on the method/
command level.

5. Scripted Init Blocks: The Next Scripting Language provides scripted init
blocks for objects and classes (replacement for the dangerous dash "-"
mechanism in XOTcl that allows to set variables and invoke methods upon
object creation).

6. More Conventional Naming for Predefined Methods: The naming of
the methods in the Next Scripting Language is much more in line with the
mainstream naming conventions in OO languages. While for example XOTcl
uses proc and instproc for object specific and inheritable methods, NX uses
simply method.

7. Profiling Support: The Next Scripting Language provides now two forms of
profiling

◦ Profiling via a DTrace provider (examples are e.g. in the dtrace
subdirectory of the source tree)

◦ Significantly improved built-in profiling (results can be processed in
Tcl).

8. Significantly Improved Test Suite: The regression test suite of Next
Scripting Scripting framework contain now more than 5.000 tests, and order of
magnitude more than in XOTcl 1.6

1. Differences Between XOTcl and NX

- 3 -

1.2. NX and XOTcl Scripts

9. Much Smaller Interface: The Next Scripting Language has a much smaller
interface (i.e. provides less predefined methods) than XOTcl (see Table 1),
although the expressability was increased in NX.

Table 1. Comparison of the Number of
Predefined Methods in NX and XOTcl

NX XOTcl

Methods for Objects 14 51

Methods for Classes 9 24

Info-methods for
Objects

11 25

Info-methods for Classes 11 24

Total 45 124

This comparison list compares mostly XOTcl 1 with NX, some features are also available
in XOTcl 2 (2a, 2c 2d, 3, 4).

Below is a small, introductory example showing an implementation of a class Stack in
NX and XOTcl. The purpose of this first example is just a quick overview. We will go into
much more detailed comparison in the next sections.

NX supports a block syntax, where the methods are defined during the creation of the
class. The XOTcl syntax is slightly more redundant, since every definition of a method
is a single toplevel command starting with the class name (also NX supports the style
used in XOTcl). In NX, all methods are per default protected (XOTcl does not support
protection). In NX methods are defined in the definition of the class via :method or
:public method. In XOTcl methods are defined via the instproc method.

Another difference is the notation to refer to instance variables. In NX, instance variable
are named with a single colon in the front. In XOTcl, instance variables are imported
using instvar.

Stack example in NX Stack example in XOTcl

Class create Stack {

#
Stack of Things
#

:variable things ""

:public method push {thing} {
set :things [linsert ${:things} 0

$thing]
return $thing

}

#
Stack of Things
#

Class Stack

Stack instproc init {} {
my instvar things
set things ""

}

Stack instproc push {thing} {
my instvar things
set things [linsert $things 0 $thing]

1. Differences Between XOTcl and NX

- 4 -

1.3. Using XOTcl 2.0 and the Next Scripting Language in a
Single Interpreter

Stack example in NX Stack example in XOTcl

:public method pop {} {
set top [lindex ${:things} 0]
set :things [lrange ${:things} 1 end]
return $top

}
}

return $thing
}

Stack instproc pop {} {
my instvar things
set top [lindex $things 0]
set things [lrange $things 1 end]

}

In general, the Next Scripting Framework supports multiple object systems concurrently.
Effectively, every object system has different base classes for creating objects and classes.
Therefore, these object systems can have different different interfaces and names of
built-in methods. Currently, the Next Scripting Framework is packaged with three object
systems:

• NX

• XOTcl 2.0

• TclCool

XOTcl 2 is highly compatible with XOTcl 1, the language NX is described below in more
details, the language TclCool was introduced in Tip#279 and serves primarily an example
of a small OO language.

A single Tcl interpreter can host multiple Next Scripting Object Systems at the same
time. This fact makes migration from XOTcl to NX easier. The following example script
shows to use XOTcl and NX in a single script:

Using Multiple Object Systems in a single Script

namespace eval mypackage {

package require XOTcl 2.0

Define a class with a public method foo using XOTcl
xotcl::Class C1
C1 instproc foo {} {puts "hello world"}

package require nx

Define a class with a public method foo using NX
nx::Class create C2 {

:public method foo {} {puts "hello world"}
}

}

One could certainly create object or classes from the different object systems via fully
qualified names (e.g. using e.g. ::xotcl::Class or ::nx::Class), but for migration
for systems without explicit namespaces switching between the object systems eases
migration. "Switching" between XOTcl and NX effectively means the load some packages
(if needed) and to import either the base classes (Object and Class) of XOTcl or NX into
the current namespace.

1. Differences Between XOTcl and NX

- 5 -

2.1. Defining Objects and Classes

2.2. Defining Methods

2. XOTcl Idioms in the Next Scripting
Language

The following sections are intended for reader familiar with XOTcl and show, how certain
language Idioms of XOTcl can be expressed in NX. In some cases, multiple possible
realizations are listed

When creating objects or classes, one should use the method create explicitly. In
XOTcl, a default unknown method handler was provided for classes, which create for
every unknown method invocation an object/class with the name of the invoked method.
This technique was convenient, but as well dangerous, since typos in method names lead
easily to unexpected behavior. This default unknown method handler is not provided in
NX (but can certainly be provided as a one-liner in NX by the application).

XOTcl Next Scripting Language

Class ClassName Class create ClassName

Object ObjectName Object create ObjectName

In general, both XOTcl and NX support methods on the object level (per-object methods,
i.e. methods only applicable to a single object) and on the class level (methods inherited
to instances of the classes). While the naming in XOTcl tried to follow closely the Tcl
tradition (using the term proc for functions/methods), NX uses the term method for
defining scripted methods.

XOTcl uses the prefix inst to denote that methods are provided for instances, calling
therefore scripted methods for instances instproc. This is certainly an unusual term.
The approach with the name prefix has the disadvantage, that for every different kind
of method, two names have to be provided (eg. proc and instproc, forward and
instforward).

NX on the contrary uses the same term for defining instance method or object-specific
methods. When the term (e.g. method) is used on a class, the method will be an instance
method (i.e. applicable to the instances of the class). When the term is used on an object
with the modifier object, an object-specific method is defined. This way one can define
the same way object specific methods on an object as well as on a class.

Furthermore, both XOTcl and NX distinguish between scripted methods (section 3.2.1)
and C-defined methods (section 3.2.2). Section 3.2.3 introduces method protection,
which is only supported by NX.

2. XOTcl Idioms in the Next Scripting Language

- 6 -

2.2.1. Scripted Methods Defined in the Init-block of a Class/Object or
with Separate Calls

The following examples show the definition of a class and its methods in the init-block of
a class (NX only), and the definition of methods via separate top level calls (XOTcl and
NX).

XOTcl Next Scripting Language

Define instance method 'foo' and object
method 'bar' for a Class 'C' with
separate
toplevel commands

Class C
C instproc foo args {...}
C proc bar args {...}

Define instance method and object method
in the init-block of a class

Class create C {
:method foo args {...}
:object method bar args {...}

}

Define instance method and object method
with separate commands

Class create C
C method foo args {...}
C object method bar args {...}

Define object-specific method foo
for an object 'o' with separate commands

Object o
o set x 1
o proc foo args {...}

Define object method and set
instance variable in the init-block of
an object

Object create o {
set :x 1
:object method foo args {...}

}

Define object method and set
instance variable with separate
commands

Object create o
o eval {set :x 1}
o object method foo args {...}

2.2.2. Different Kinds of Methods

This section describes various kinds of methods. The different kinds of methods are
defined via different method-defining methods, which are summarized in the following
table for XOTcl and NX.

XOTcl Next Scripting Language

Methods for defining methods:
#
proc
instproc
forward
instforward
parametercmd
instparametercmd
#
All these methods return empty.

Methods for defining methods:
#
alias
forward
method
#
All these methods return method-handles.

2. XOTcl Idioms in the Next Scripting Language

- 7 -

In addition to scripted methods (previous section) XOTcl supports forwarder (called
forward and instforward) and accessor functions to variables (called
parametercmd and instparametercmd). The accessor functions are used normally
internally when object-specific parameters are defined (see Section 3.4).

In NX forwarders are called forward. NX does not provide an public available method
to define variable accessors like parametercmd in XOTcl, but use interanlly the Next
Scripting Framework primitive nsf::method::setter when appropriate.

XOTcl Next Scripting Language

Class C
C instforward f1 ...
C forward f2 ...

Object o
o forward f3 ...

Define forwarder

Class create C {
:forward f1 ...
:object forward f2 ...

}

Object create o {
:object forward f3 ...

}

Define setter and getter methods in
XOTcl.
#
XOTcl provides methods for these.

Class C
C instparametercmd p1
C parametercmd p2

Object o
o parametercmd p3

Define setter and getter methods in NX.
#
NX does not provide own methods, but uses
the low level framework commands, since
application developer will only seldomly
need it.

Class create C
::nsf::method::setter C p1
::nsf::method::setter C -per-object p2

Object create o
::nsf::method::setter o p3

NX supports in contrary to XOTcl the method alias which can be used to register
arbitrary Tcl commands or methods for an object or class under a provided method
name. Aliases can be used to reuse a certain implementation in e.g. different object
systems under potentially different names. In some respects aliases are similar to
forwarders, but they do not involve forwarding overhead.

XOTcl Next Scripting Language

Method "alias" not available

Define method aliases
(to scripted or non-scripted methods)

Class create C {
:alias a1 ...
:object alias a2 ...

}

Object create o {
:object alias a3 ...

}

2.2.3. Method Modifiers and Method Protection

NX supports four method modifiers object, public, protected and private. All
method modifiers can be written in front of every method defining command. The

2. XOTcl Idioms in the Next Scripting Language

- 8 -

method modifier object is used to denote object-specific methods (see above). The
concept of method protection is new in NX.

XOTcl Next Scripting Language

Method modifiers
#
"object",
"public",
"protected", and
"private"
#
are not available

Method modifiers
#
"object",
"public",
"protected"
#
are applicable for all kinds of
method defining methods:
#
method, forward, alias
#
The modifier "private" is available for
#
method, forward, alias
#
Class create C {

:/method-definiton-method/ ...
:public /method-definiton-method/ ...
:protected /method-definiton-method/ ...
:private /method-definiton-method/ ...
:object /method-definiton-method/ ...
:public object /method-definiton-method/

...
:protected object

/method-definiton-method/ ...
:private object

/method-definiton-method/ ...
}

XOTcl does not provide method protection. In NX, all methods are defined per default as
protected. This default can be changed by the application developer in various ways. The
command ::nx::configure defaultMethodCallProtection true|false can
be used to set the default call protection for scripted methods, forwarder and aliases. The
defaults can be overwritten also on a class level.

NX provides means for method hiding via the method modifier private. Hidden
methods can be invoked only via the -local flag, which means: "call the specified
method defined in the same class/object as the currently executing method".

XOTcl Next Scripting Language

XOTcl provides no means for
method hiding

Hiding of methods via "private"
#
nx::Class create Base {

:private method baz {a b} {expr {$a +
$b}}

:public method foo {a b} {: -local baz
$a $b}
}

nx::Class create Sub -superclass Base {
:public method bar {a b} {: -local baz

$a $b}
:private method baz {a b} {expr {$a *

$b}}

:create s1
}

s1 foo 3 4 ;# returns 7
s1 bar 3 4 ;# returns 12

2. XOTcl Idioms in the Next Scripting Language

- 9 -

2.3. Resolvers

XOTcl Next Scripting Language

s1 baz 3 4 ;# unable to dispatch method
'baz'

2.2.4. Method Deletion

NX provides an explicit delete method for the deletion of methods.

XOTcl Next Scripting Language

XOTcl provides only method deletion with
the equivalent of Tcl's "proc foo {} {}"
/cls/ instproc foo {} {}
/obj/ proc foo {} {}

Deletion of Methods
#
/cls/ delete method /name/
/obj/ delete object method /name/

The Next Scripting Framework defines Tcl resolvers for method and variable names to
implement object specific behavior. Within the bodies of scripted methods these resolver
treat variable and function names starting with a colon : specially. In short, a colon-
prefixed variable name refers to an instance variable, and a colon-prefixed function name
refers to a method. The sub-sections below provide detailed examples.

Note that the resolvers of the Next Scripting Framework can be used in the XOTcl 2.*
environment as well.

2.3.1. Invoking Methods

In XOTcl, a method of the same object can be invoked via my, or in general via using the
name of the object in front of the method name.

In NX, the own methods are called via the method name prefixed with a single colon. The
invocation of the methods of other objects is the same in NX and XOTcl.

XOTcl Next Scripting Language

Class C
C instproc foo args {...}
C instproc bar args {

my foo 1 2 3 ;# invoke own method
o baz ;# invoke other object's

method
}
Object o
o proc baz {} {...}

Class create C {
:method foo args {...}
:method bar args {

:foo 1 2 3 ;# invoke own method
o baz ;# invoke other object's

method
}

}
Object create o {

:public object method baz {} {...}
}

2. XOTcl Idioms in the Next Scripting Language

- 10 -

2.3.2. Accessing Own Instance Variables from Method Bodies

In general, the Next Scripting Language favors the access to an objects’s own instance
variables over variable accesses of other objects. This means that in NX it is syntactically
easier to access the own instance variables. On the contrary, in XOTcl, the variable access
to own and other variables are fully symmetric.

In XOTcl, the following approaches are used to access instance variables:

• Import instance variables via instvar and access variables via $varName

• Set or get instance variables via my set varName ?value? or other variable
accessing methods registered on xotcl::Object such as append, lappend,
incr, etc.

• Register same-named accessor functions and set/get values of instance
variables via my varName ?value?

In NX, the favored approach to access instance variables is to use the name resolvers,
although it is as well possible to import variables via nx::var import or to check for
the existence of instance variables via nx::var exists.

The following examples summary the use cases for accessing the own and other instance
variables.

XOTcl Next Scripting Language

Class C
C instproc foo args {

Method scoped variable a
set a 1
Instance variable b
my instvar b
set b 2
Global variable/namespaced variable c
set ::c 3

}

Class create C {
:method foo args {...}

Method scoped variable a
set a 1
Instance variable b
set :b 2
Global variable/namespaced variable c
set ::c 3

}
}

... instproc ... {
my set /varName/ ?value?

}

Set own instance variable to a value via
resolver (preferred and fastest way)

... method ... {
set :/newVar/ ?value?

}

... instproc ... {
my instvar /varName/
set /varName/ ?value?

}

Set own instance variable via
variable import

... method ... {
::nx::var import [self] /varName/
set /varName/ ?value?

}

... instproc ... {
set /varName/ [my set /otherVar/]

}

Read own instance variable

... method ... {
set /varName/ [set :/otherVar/]

}

2. XOTcl Idioms in the Next Scripting Language

- 11 -

XOTcl Next Scripting Language

... method ... {
set /newVar/ ${:/otherVar/}

}

... instproc ... {
my exists /varName/

}

Test existence of own instance variable

... method ... {
info :/varName/

}

... method ... {
::nx::var exists [self] /varName/

}

2.3.3. Accessing Instance Variables of other Objects

XOTcl Next Scripting Language

/obj/ set /varName/ ?value?

Set instance variable of object obj to a
value via resolver
(preferred way: define property on obj)

/obj/ eval [list set :/varName/ ?value?]

set /varName/ [/obj/ set /otherVar/]

Read instance variable of object obj
via resolver

set /varName/ [/obj/ eval {set
:/otherVar/}]

... instproc ... {
/obj/ instvar /varName/
set /varName/ ?value?

}

Read instance variable of object /obj/
via import

... method ... {
::nx::var import /obj/ /varName/
set /varName/ ?value?

}

/obj/ exists varName

Test existence of instance variable of
object obj

/obj/ eval {info exists :/varName/}

::nx::var exists /obj/ /varName/

2. XOTcl Idioms in the Next Scripting Language

- 12 -

2.4. Parameters

While XOTcl 1 had very limited forms of parameters, XOTcl 2 and NX provide a
generalized and highly orthogonal parameter machinery handling various kinds of value
constraints (also called value checkers). Parameters are used to specify,

• how objects and classes are initialized (we call these parameter types Configure
Parameters), and

• what values can be passed to methods (we call these Method Parameters).

Furthermore, parameters might be positional or non-positional, they might be optional
or required, they might have a defined multiplicity, and value-types, they might be
introspected, etc. The Next Scripting Framework provide a unified, C-implemented
infrastructure to handle both, object and method parameters in the same way with a high
degree of orthogonality.

Configuration parameters were specified in XOTcl 1 primarily via the method
parameter in a rather limited way, XOTcl 1 only supported non-positional parameters
in front of positional ones, supported no value constraints for positional parameters,
provided no distinction between optional and required, and did not support multiplicity.

Furthermore, the Next Scripting Framework provides optionally Return Value Checking
based on the same mechanism to check whether some methods return always the values
as specified.

2.4.1. Parameters for Configuring Objects: Variables and Properties

Configure parameters are used for specifying values for configuring objects when they
are created (i.e. how instance variables are initialized, what parameters can be passed
in for initialization, what default values are used, etc.). Such configuration parameters
are supported in XOTcl primarily via the method parameter, which is used in XOTcl to
define multiple parameters via a list of parameter specifications.

Since the term "parameter" is underspecified, NX uses a more differentiated
terminology. NX distinguishes between configurable instance variables (also called
properties) and non configurable instance variables (called variables), which might
have as well e.g. default values. The values of configurable properties can be queried
at runtime via cget, and their values can be altered via configure. When the value
of a configure parameter is provided or changed, the value checkers from the variable
definition are used to ensure, the value is permissible (i.e. it is for example an integer
value). The sum of all configurable object parameters are called configure parameters.
To define a define a configurable variable, NX uses the method property, for non-
configurable variables, the method variable is used.

Optionally, one can define in NX, that a property or a variable should have a public,
protected or private accessor. Such an accessor is a method with the same name as
the variable. In XOTcl, every parameter defined as well automatically a same-named
accessor method, leading to potential name conflicts with other method names.

In the examples below we show the definition of configurable an non-configurable
instance variables using variable and property respectively.

2. XOTcl Idioms in the Next Scripting Language

- 13 -

XOTcl Next Scripting Language

Define class "Foo" with instance
variables "x" and "y" initialized
on instance creation. The initialization
has to be performed in the constructor.

Class Foo
Foo instproc init args {

instvar x y
set x 1
set y 2

}

Create instance of the class Foo
Foo f1

Object f1 has instance variables
x == 1 and y == 2

Define class "Foo" with instance
variables
"x" and "y" initialized on instance
creation.
The method "variable" is similar in
syntax
to Tcl's "variable" command. During
instance creation, the variable
definitions are used for the
initialization of the variables of the
object.

Class create Foo {
:variable x 1
:variable y 2

}

Create instance of the class Foo
Foo create f1

Object f1 has instance variables
x == 1 and y == 2

While XOTcl follows a procedural way to initialize variables via the constructor init, NX
follows a more declarative approach. Often, classes have superclasses, which often want
to provide their own instance variables and default values. The declarative approach
from NX solves this via inheritance, while an procedural approach via assign statements
in the constructor requires explicit constructor calls, which are often error-prone.
Certainly, when a user prefers to assign initial values to instance variables via explicit
assign operations in constructors, this is as ell possible in NX.

NX uses the same mechanism to define class variables or object variables.

XOTcl Next Scripting Language

No syntactic support for creating
class variables

Define a object variable "V" with value
100 and
an instance variable "x". "V" is defined
for the
class object Foo, "x" is defined in the
instances of the class. "object
variable" works
similar to "object method".

Class create Foo {
:object variable V 100
:variable x 1

}

In the next step, we define configurable instance variables which we call properties in
NX.

XOTcl uses the method parameter is a shortcut for creating multiple configurable
variables with automically created accessors (methods for reading and writing of the
variables). In NX, the prefered way to create configurable variables is to use the method
property. The method property in NX is similar to variable, but makes the
variables configurable, which means that

1. one can specify the property as a non-positional parameter upon creation of the
object,

2. XOTcl Idioms in the Next Scripting Language

- 14 -

2. one can query the value via the method cget, and

3. one can modify the value of the underlying variable via the method configure.

XOTcl Next Scripting Language

Parameters specified as a list
(short form); parameter
"a" has no default, "b" has default "1"

Class Foo -parameter {a {b 1}}

Create instance of the class Foo
Foo f1 -a 0

Object f1 has instance variables
a == 0 and b == 1

XOTcl registers automatically accessors
for the parameters. Use the accessor
"b" to output the value of variable "b"
puts [f1 b]

Use the setter to alter value of
instance variable "b"
f1 b 100

Define property "a" and "b". The
property "a" has no default, "b" has
default value "1"

Class create Foo {
:property a
:property {b 1}

}

Create instance of the class Foo
Foo create f1 -a 0

Object f1 has instance variables
a == 0 and b == 1

Use the method "cget" to query the value
of a configuration parameter
puts [f1 cget -b]

Use the method "configure" to alter the
value of instance variable "b"
f1 configure -b 100

In general, NX allows to create variables and properties with and without accessor
methods. The created accessor methods might be public, protected or public.
When the value none is provided to -accessor, no accessor will be created. This is
actually the default in NX. In order to change the default behavior in NX, one can use
::nx::configure defaultAccessor none|public|protected|private.

XOTcl Next Scripting Language

"parameter" creates always accessor
methods, accessor methods are
always public, no "cget" is available.

Class create Foo -parameter {a {b1}}

Use the accessor method to query
the value of a configuration parameter
puts [f1 b]

Use the accessor method to set the
value of instance variable "a"
f1 a 100

Use the accessor method to unset the
value of instance variable "a" n.a. via
accessor

Define property "a" and "b". The
property "a" has no default, "b" has
default value "1"

Class create Foo {
:variable -accessor public a
:property -accessor public {b 1}

}

Use the accessor method to query
the value of a configuration parameter
puts [f1 b get]

Use the accessor method to set the
value of instance variable "a"
f1 a set 100

Use the accessor method to unset the
value of instance variable "a"
f1 a unset

Similar to variable, properties can be defined in NX on the class and on the object
level.

2. XOTcl Idioms in the Next Scripting Language

- 15 -

XOTcl Next Scripting Language

XOTcl provides no means to define
configurable variables at the object
level

Define class with a property for the
class object
named "cp". This is similar to "static
variables"
in some other object-oriented programming
languages.

Class create Foo {
...
:object property cp 101

}

Define object property "op"

Object create o {
:object property op 102

}

NX supports value constraints (value-checkers) for object and method parameters in
an orthogonal manner. NX provides a predefined set of value checkers, which can be
extended by the application developer. In NX, the value checking is optional. This means
that it is possible to develop e.g. which a large amount of value-checking and deploy the
script with value checking turned off, if the script is highly performance sensitive.

XOTcl Next Scripting Language

No value constraints for
parameter available

Predefined value constraints:
object, class, alnum, alpha, ascii,
boolean,
control, digit, double, false, graph,
integer,
lower, parameter, print, punct,
space, true,
upper, wordchar, xdigit
#
User defined value constraints are
possible.
All parameter value checkers can be
turned on
and off at runtime.
#
Define a required boolean property "a"
and an integer property "b" with a
default.
The first definition uses "properties",
the second definition uses multiple
"property" statements.

Class create Foo -properties {
a:boolean
{b:integer 1}

}

Class create Foo {
:property a:boolean
:property {b:integer 1}

}

In XOTcl all configure parameters were optional. Required parameters have to be passed
to the constructor of the object.

NX allows to define optional and required configure parameters (as well as method
parameters). Therefore, configure parameters can be used as the single mechanism to

2. XOTcl Idioms in the Next Scripting Language

- 16 -

parameterize objects. It is in NX not necessary (and per default not possible) to pass
arguments to the constructor.

XOTcl Next Scripting Language

Required parameter not available

Required parameter:
Define a required property "a" and a
required boolean property "b"

Class create Foo -properties {
a:required
b:boolean,required

}

Class create Foo {
:property a:required
:property b:boolean,required

}

NX supports in contrary to XOTcl to define the multiplicity of values per parameter. In
NX, one can specify that a parameter can accept the value "" (empty) in addition to e.g.
an integer, or one can specify that the value is an empty or non-empty ist of values via
the multiplicity. For every specified value, the value checkers are applied.

XOTcl Next Scripting Language

Multiplicity for parameter
not available

Parameter with multiplicity
ints is a list of integers, with
default
objs is a non-empty list of objects
obj is a single object, maybe empty

Class create Foo -properties {
{ints:integer,0..n ""}
objs:object,1..n
obj:object,0..1

}

Class create Foo {
:property {ints:integer,0..n ""}
:property objs:object,1..n
:property obj:object,0..1

}

For the implementation of variables and properties, NX uses slot objects, which are an
extension to the -slots already available in XOTcl. While very for every property in
NX, a slot object is created, for performance reasons, not every variable has a slot
associated.

When an property is created, NX does actually three things:

1. Create a slot object, which can be specified in more detail using the init-block of
the slot object

2. Create a parameter definition for the initialization of the object (usable via a
non-positional parameter during object creation), and

3. register optionally an accessor function (setter), for which the usual protection
levels (public, protected or private) can be used.

2. XOTcl Idioms in the Next Scripting Language

- 17 -

XOTcl Next Scripting Language

Define parameters via slots

Class Foo -slots {
Attribute a
Attribute b -default 1

}

Create instance of the class Foo
and provide a value for instance
variable "a"
Foo f1 -a 0

Object f1 has a == 0 and b == 1

Configurable parameters specified via the
method "property" (supports method
modifiers and scripted configuration;
see below)

Class create Foo {
:property a
:property {b 1}

}

Create instance of the class Foo and
provide a value for instance variable "a"
Foo create f1 -a 0

Object f1 has a == 0 and b == 1

Since the slots are objects, the slot objects can be configured and parameterized like
every other object in NX. Slot objects can be provided with a scripted initialization as
well. We show first the definition of properties simliar to the functionality provided as
well by XOTcl and show afterwards how to use value constraints, optional parameters,
etc. in NX.

XOTcl Next Scripting Language

Define parameter with an an
attribute-specific type checker

Class Person -slots {
Attribute create sex -type "sex" {

my proc type=sex {name value} {
switch -glob $value {

m* {return m}
f* {return f}
default {

error "expected sex but got
$value"

}
}

}
}

}

Configure parameter with scripted
definition (init-block), defining a
property specific type checker

Class create Person {
:property -accessor public

sex:sex,convert {

define a converter to standardize
representation

:object method type=sex {name value}
{

switch -glob $value {
m* {return m}
f* {return f}
default {error "expected sex but

got $value"}
}

}

}
}

The parameters provided by a class for the initialization of instances can be introspected
via querying the parameters of the method create: /cls/ info lookup parameters
create (see [info_configure_parameter]).

2.4.2. Delete Variable Handlers

XOTcl Next Scripting Language

No syntactic support for deleting
variable handlers

Like deletion of Methods:
Delete on the object, where the
variable handler is defined.

2. XOTcl Idioms in the Next Scripting Language

- 18 -

XOTcl Next Scripting Language

/cls/ delete property /name/
/obj/ delete object property /name/

/cls/ delete variable /name/
/obj/ delete object variable /name/

2.4.3. Method Parameters

Method parameters are used to specify the interface of a single method (what kind of
values may be passed to a method, what default values are provided etc.). The method
parameters specifications in XOTcl 1 were limited and allowed only value constraints for
non positional arguments.

NX and XOTcl 2 provide value constraints for all kind of method parameters. While
XOTcl 1 required non-positional arguments to be listed in front of positional arguments,
this limitation is lifted in XOTcl 2.

XOTcl Next Scripting Language

Define method foo with non-positional
parameters (x, y and y) and positional
parameter (a and b)

Class C
C instproc foo {

-x:integer
-y:required
-z
a
b

} {
...

}
C create c1

invoke method foo
c1 foo -x 1 -y a 2 3

Define method foo with
non-positional parameters
(x, y and y) and positional
parameter (a and b)

Class create C {
:public method foo {

-x:integer
-y:required
-z
a
b

} {
...

}
:create c1

}
invoke method foo
c1 foo -x 1 -y a 2 3

Only leading non-positional
parameters are available; no
optional positional parameters,
no value constraints on
positional parameters,
no multiplicity, ...

Define various forms of parameters
not available in XOTcl 1

Class create C {
trailing (or interleaved)

non-positional
parameters
:public method m1 {a b -x:integer -y} {

...
}

positional parameters with value
constraints

:public method m2 {a:integer b:boolean} {
#...

}

optional positional parameter
(trailing)

:public method set {varName
value:optional} {

....
}

parameter with multiplicity

2. XOTcl Idioms in the Next Scripting Language

- 19 -

XOTcl Next Scripting Language

:public method m3 {-objs:object,1..n
c:class,0..1} {

...
}

In general, the same list of value
constraints as for configure parameter

is
available (see above).
#
User defined value constraints are
possible. All parameter value checkers
can be turned on and off.

}

2.4.4. Return Value Checking

Return value checking is a functionality available in the Next Scripting Framework, that
was not yet available in XOTcl 1. A return value checker assures that a method returns
always a value satisfying some value constraints. Return value checkers can be defined on
all forms of methods (scripted or C-implemented). Like for other value checkers, return
value checkers can be turned on and off.

XOTcl Next Scripting Language

No return value checking
available

Define method foo with non-positional
parameters (x, y and y) and positional
parameter (a and b)

Class create C {

Define method foo which returns an
integer value
:method foo -returns integer

{-x:integer} {
...

}

Define an alias for the Tcl command
::incr

and assure, it always returns an
integer

value
:alias incr -returns integer ::incr

Define a forwarder that has to return
an

integer value
:forward ++ -returns integer ::expr 1 +

Define a method that has to return a
non-empty list of objects
:public object method instances {} \

-returns object,1..n {
return [:info instances]

}
}

2. XOTcl Idioms in the Next Scripting Language

- 20 -

2.5. Interceptors

XOTcl and NX allow the definition of the same set of interceptors, namely class- and
object-level mixins and class- and object-level filters. The primary difference in NX is the
naming, since NX abandons the prefix "inst" from the names of instance specific method,
but uses the the modifier objec" for object specific methods.

Therefore, in NX, if a mixin is registered on a class-level, it is applicable for the instances
(a per-class mixin), and if and object mixin is registered, it is a per-object mixin. In
both cases, the term mixin is used, in the second case with the modifier object. As in
all other cases, one can register the same way a per-object mixin on a plain object or on a
class object.

2.5.1. Register Mixin Classes and Mixin Guards

XOTcl Next Scripting Language

/cls/ instmixin ...
/cls/ instmixinguard /mixin/ ?condition?

Query per-class mixin
/cls/ instmixin

Register/clear per-class mixin and guard
for
a class

/cls/ mixins add|set|clear ...
/cls/ mixins guard /mixin/ ?condition?
/cls/ configure -mixin ...

Query per-class mixins
/cls/ mixins get
/cls/ cget -mixins

Query per-class mixins (without guards)
/cls/ mixins classes

/obj/ mixin ...
/obj/ mixinguard /mixin/ ?condition?

Query per-object mixins
/obj/ mixin

Register/clear per-object mixin and
guard for
an object

/obj/ object mixins add|set|clear ...
/obj/ object mixins guard /mixin/
?condition?
/obj/ configure -object-mixins ...

Query per-object mixin
/obj/ object mixins get
/obj/ cget -object-mixin

Query per-object mixins (without guards)
/cls/ mixins classes

2.5.2. Register Filters and Filter Guards

XOTcl Next Scripting Language

Register per-class filter and guard for
a class
/cls/ instfilter ...
/cls/ instfilterguard /filter/ ?condition?

Register/clear per-class filter and
guard for
a class

/cls/ filters add|set|clear ...
/cls/ filters guard /filter/ ?condition?

2. XOTcl Idioms in the Next Scripting Language

- 21 -

2.6. Introspection

XOTcl Next Scripting Language

Query per-class filter
/cls/ instfilter

/cls/ configure -filters ...

Query per-class filters
/cls/ filters get
/cls/ cget -filters

Query per-class filters (without guards)
/cls/ filters methods

/obj/ filter ...
/obj/ filterguard /filter/ ?condition?

Register(clear per-object filter and
guard for
an object

/obj/ object filters add|set|clear ...
/obj/ object filters guard /filter/
?condition?
/obj/ configure -object-filters ...

Query per-object filters
/cls/ object filters get
/obj/ cget -object-filters

Query per-object filters (without guards)
/cls/ object filters methods

In general, introspection in NX became more orthogonal and less dependent on the type
of the method. In XOTcl it was e.g. necessary that a developer had to know, whether a
method is e.g. scripted or not and has to use accordingly different sub-methods of info.

In NX, one can use e.g. always info method with a subcommand and the framework
tries to hide the differences as far as possible. So, one can for example obtain with info
method parameter the parameters of scripted and C-implemented methods the same
way, one one can get the definition of all methods via info method definition
and one can get an manual-like interface description via info method syntax. In
addition, NX provides means to query the type of a method, and NX allows to filter by
the type of the method.

2.6.1. List sub- and superclass relations

While XOTcl used singular words for introspecting sub- and superclass relations, NX
uses plural word to indicate that potentially a list of values is returned.

XOTcl Next Scripting Language

/cls/ info superclass ?pattern? /cls/ info superclasses ?pattern?

/cls/ info subclass ?pattern?
/cls/ info subclasses -type setter
?pattern?

2. XOTcl Idioms in the Next Scripting Language

- 22 -

2.6.2. List methods defined by classes

While XOTcl uses different names for obtaining different kinds of methods defined by a
class, NX uses info methods in an orthogonal manner. NX allows as well to use the
call protection to filter the returned methods.

XOTcl Next Scripting Language

/cls/ info instcommands ?pattern? /cls/ info methods ?pattern?

/cls/ info instparametercmd ?pattern? /cls/ info methods -type setter ?pattern?

/cls/ info instprocs ?pattern? /cls/ info methods -type scripted ?pattern?

n.a.

/cls/ info methods -type alias ?pattern?
/cls/ info methods -type forwarder
?pattern?
/cls/ info methods -type object ?pattern?
/cls/ info methods -callprotection
public|protected ...

2.6.3. List methods defined by objects

While XOTcl uses different names for obtaining different kinds of methods defined by an
object, NX uses info methods in an orthogonal manner. NX allows as well to use the
call protection to filter the returned methods.

XOTcl Next Scripting Language

/obj/ info commands ?pattern? /obj/ info object methods ?pattern?

/obj/ info parametercmd ?pattern?
/obj/ info object methods -type setter
?pattern?

/obj/ info procs ?pattern?
/obj/ info object methods -type scripted
?pattern?

n.a.

/obj/ info object methods -type alias
?pattern?
/obj/ info object methods -type forwarder
?pattern?
/obj/ info object methods -type object
?pattern?
/obj/ info object methods -callprotection
public|protected ...

2. XOTcl Idioms in the Next Scripting Language

- 23 -

2.6.4. Check existence of a method

NX provides multiple ways of checking, whether a method exists; one can use info
method exists to check, if a given method exists (return boolean), or one can use
info methods ?pattern?, where pattern might be a single method name without
wild-card characters. The method info methods ?pattern? returns a list of
matching names, which might be empty. These different methods appear appropriate
depending on the context.

XOTcl Next Scripting Language

/obj|cls/ info \
[inst](commands|procs|parametercmd) \
?pattern?

/cls/ info method exists /methodName/
/cls/ info methods /methodName/
/obj/ info object method exists
/methodName/
/obj/ info object methods /methodName/

2.6.5. List callable methods

In order to obtain for an object the set of artefacts defined in the class hierarchy, NX uses
info lookup. One can either lookup methods (via info lookup methods) or slots
(via info lookup slots). The plural term refers to a potential set of return values.

XOTcl Next Scripting Language

/obj/ info methods ?pattern?
/obj/ info lookup methods ... ?pattern?
Returns list of method names

n.a.

List only application specific methods
/obj/ info lookup methods -source
application ... ?pattern?
Returns list of method names

Options for 'info methods'
#
-incontext
-nomixins

Options for 'info lookup methods'
#
-source ...
-callprotection ...
-incontext
-type ...
-nomixins

n.a.

List slot objects defined for obj
-source might be
all|application|baseclasses
-type is the class of the slot object

/obj/ info lookup slots ?-type ...?
?-source ...? ?pattern?

Returns list of slot objects

List registered filters
/obj/ info filters -order ?-guards?
?pattern?

List registered filters
/obj/ info lookup filters ?-guards?
?pattern?

2. XOTcl Idioms in the Next Scripting Language

- 24 -

XOTcl Next Scripting Language

List registered mixins
/obj/ info mixins -heritage ?-guards?
?pattern?

List registered mixins
/obj/ info lookup mixins ?-guards?
?pattern?

2.6.6. List object/class where a specified method is defined

info lookup can be used as well to determine, where exactly an artefact is located. One
can obtain this way a method handle, where a method or filter is defined.

The concept of a method-handle is new in NX. The method-handle can be used to obtain
more information about the method, such as e.g. the definition of the method.

XOTcl Next Scripting Language

/obj/ procsearch /methodName/
/obj/ info lookup method /methodName/
Returns method-handle

/obj/ filtersearch /methodName/
/obj/ info lookup filter /methodName/
Returns method-handle

2.6.7. List definition of scripted methods

XOTcl contains a long list of info subcommands for different kinds of methods and for
obtaining more detailed information about these methods.

In NX, this list of info subcommands is much shorter and more orthogonal. For
example info method definition can be used to obtain with a single command the
full definition of a scripted method, and furthermore, it works as well the same way to
obtain e.g. the definition of a forwarder or an alias.

While XOTcl uses different names for info options for objects and classes (using the
prefix "inst" for instance specific method), NX uses for object specific method the
modifier object. For definition of class object specific methods, use the modifier
object as usual.

XOTcl Next Scripting Language

n.a.
/cls/ info method definition /methodName/
/obj/ info object method definition
/methodName/

/cls/ info instbody /methodName/
/obj/ info body /methodName/

/cls/ info method body /methodName/
/obj/ info object method body /methodName/

/cls/ info instargs /methodName/
/obj/ info args /methodName/

/cls/ info method args /methodName/
/obj/ info object method args /methodName/

2. XOTcl Idioms in the Next Scripting Language

- 25 -

XOTcl Next Scripting Language

/cls/ info instnonposargs /methodName/
/obj/ info object method args /methodName/

/cls/ info method parameter /methodName/
/obj/ info object method parameter
/methodName/

/cls/ info instdefault /methodName/
/obj/ info default /methodName/

not needed, part of
"info ?object? method parameter"

/cls/ info instpre /methodName/
/obj/ info pre /methodName/

/cls/ info method precondition /methodName/
/obj/ info object method precondition
/methodName/

/cls/ info instpost /methodName/
/obj/ info post /methodName/

/cls/ info method postcondition
/methodName/
/obj/ info object method postcondition
/methodName/

Another powerful introspection option in NX is info ?object? method syntax
which obtains a representation of the parameters of a method in the style of Tcl man
pages (regardless of the kind of method).

XOTcl Next Scripting Language

n.a.
/cls/ info method syntax /methodName/
/obj/ info object method syntax
/methodName/

2.6.8. List Configure Parameters

The way, how newly created objects can be configured is determined in NX via
properties. The configuration happens during creation via the methods create or new
or during runtime via configure. These methods have therefore virtual argument lists,
depending on the object or class on which they are applied.

XOTcl Next Scripting Language

n.a.

Return the parameters applicable to
the create method of a certain class.
class can be configured. A pattern can
be used to filter the results.

/cls/ info lookup parameters create
?/pattern/?

Return in the result in documentation
syntax

/cls/ info lookup syntax create ?/pattern/?

"info lookup parameters configure"
returns
parameters available for configuring the
current object (might contain object

2. XOTcl Idioms in the Next Scripting Language

- 26 -

XOTcl Next Scripting Language

specific information)

/obj/ info lookup parameters configure
?pattern?

"info lookup configure syntax" returns
syntax of
a call to configure in the Tcl parameter
syntax

/obj/ info lookup syntax configure

Obtain information from a parameter
(as e.g. returned from "info lookup
parameters configure").

nsf::parameter::info name /parameter/
nsf::parameter::info syntax /parameter/
nsf::parameter::info type /parameter/

2.6.9. List Variable Declarations (property and variable)

XOTcl Next Scripting Language

obtain parameter definitions defined
for a class
/cls/ info parameter

"info variables" returns handles of
properties and variables defined by this
class or object

/cls/ info variables ?pattern?
/obj/ info object variables ?pattern?

"info lookup variables" returns handles
of variables and properties applicable
for the current object (might contain
object specific information)

/obj/ info lookup variables /pattern/

"info variable" lists details about a
single property or variable.

/obj/ info variable definition /handle/
/obj/ info variable name /handle/
/obj/ info variable parameter /handle/

2.6.10. List Slots

XOTcl Next Scripting Language

n.a.

Return list of slots objects defined on
the
object or class
#
-source might be
all|application|baseclasses
-type is the class of the slot object
-closure includes slots of superclasses

/cls/ info slots \
?-type value? ?-closure? ?-source

value? ?pattern?
/obj/ info object slots ?-type ...?
?pattern?

2. XOTcl Idioms in the Next Scripting Language

- 27 -

XOTcl Next Scripting Language

List reachable slot objects defined for
obj
-source might be
all|application|baseclasses
-type is the class of the slot object
Returns list of slot objects.

/obj/ info lookup slots \
?-type ...? ?-source ... ?pattern?

Obtain definition, name or parameter from
slot object

/slotobj/ definition
/slotobj/ name
/slotobj/ parameter

2.6.11. List Filter or Mixins

In NX all introspection options for filters are provided via info filters and all
introspection options for mixins are provided via info mixins.

XOTcl Next Scripting Language

/obj/ info filter ?-guards? ?-order?
?pattern?
/obj/ info filterguard /name/

/obj/ info object filters \
?-guards? ?pattern?

/cls/ info instfilter \
?-guards? ?-order? ?pattern?

/cls/ info instfilterguard /name/

/cls/ info filters \
?-guards? ?pattern?

/obj/ info mixin ?-guards? ?-order
?pattern?
/obj/ info mixinguard /name/

/obj/ info object mixins \
?-guards? ?pattern?

/cls/ info instmixin \
?-guards? ?-order? ?pattern?

/cls/ info instmixinguard /name/

/cls/ info mixins \
?-closure? ?-guards? ?-heritage?

?pattern?

2.6.12. List definition of methods defined by aliases, setters or
forwarders

As mentioned earlier, info method definition can be used on every kind of
method. The same call can be used to obtain the definition of a scripted method, a
method-alias, a forwarder or a setter method.

2. XOTcl Idioms in the Next Scripting Language

- 28 -

XOTcl Next Scripting Language

n.a.
/cls/ info method definition /methodName/
/obj/ info object method definition
/methodName/

2.6.13. List Method-Handles

NX supports method-handles to provide means to obtain further information about a
method or to change maybe some properties of a method. When a method is created, the
method creating method returns the method handle to the created method.

XOTcl Next Scripting Language

n.a.

#
List the method handle of the specified
method,
can be used e.g. for aliases. "handle"
is the short
form of "definitionhandle".
#
/cls/ info method handle /methodName/
/obj/ info object method handle
/methodName/
#
For ensemble methods (method name
contains
spaces) one can query as well the
registration
handle, which is the handle to the root
of the
ensemble; the definiton handle points to
the
leaf of the ensemble.
#
/cls/ info method registrationhandle
/methodName/
/obj/ info object method
registrationhandle /methodName/
#
For aliases, one can query the original
definition via "info method origin"
#
/cls/ info method origin /methodName/
/obj/ info object method origin
/methodName/

2.6.14. List type of a method

The method info ?object? method type is new in NX to obtain the type of the
specified method.

XOTcl Next Scripting Language

n.a.
/cls/ info method type /methodName/
/obj/ info object method type /methodName/

2.6.15. List the scope of mixin classes

NX provides a richer set of introspection options to obtain information, where mixins
classes are mixed into.

2. XOTcl Idioms in the Next Scripting Language

- 29 -

XOTcl Next Scripting Language

/cls/ info mixinof ?-closure? ?pattern?

List objects, where /cls/ is a
per-object mixin

/cls/ info mixinof -scope object
?-closure? \

?pattern?

/cls/ info instmixinof ?-closure? ?pattern?

List classes, where /cls/ is a per-class
mixin

/cls/ info mixinof -scope class ?-closure?
\

?pattern?

n.a.

List objects and classes, where /cls/ is
either a per-object or a per-class mixin

/cls/ info mixinof -scope all ?-closure? \
?pattern?

/cls/ info mixinof ?-closure? ?pattern?

2.6.16. Check properties of object and classes

Similar as noted before, NX uses rather a hierarchical approach of naming using multiple
layers of subcommands).

XOTcl Next Scripting Language

/obj/ istype /sometype/
Check if object is a subtype of some
class
/obj/ info has type /sometype/

/obj/ ismixin /cls/
Check if object has the specified mixin
registered
/obj/ info has mixin /cls/

/obj/ isclass ?/cls/?

cd # Check if object is an NX class
/obj/ has type ::nx::Class

Check if object is a class in one of the
NSF object systems
::nsf::is class /obj/

/obj/ ismetaclass /cls/

Check if class is an NX metaclass
expr {[/cls/ info heritage ::nx::Class] ne
""}

Check if object is a metaclass in one of
the
NSF object systems
::nsf::is metaclass /obj/

2. XOTcl Idioms in the Next Scripting Language

- 30 -

XOTcl Next Scripting Language

n.a.
Check if object is a baseclass of an
object system
::nsf::is baseclass /obj/

n.a.
Return name of object (without namespace
prefix)
/obj/ info name

/obj/ object::exists /obj/
Check for existence of object (nsf
primitive)
::nsf::object::exists /obj/

2.6.17. Call-stack Introspection

Call-stack introspection is very similar in NX and XOTcl. NX uses for subcommand the
term current instead of self, since self has a strong connotation to the current
object. The term proc is renamed by method.

XOTcl Next Scripting Language

self

self

current object

self class current class

self args current args

self proc current method

self callingclass current calledclass

self callingobject current callingobject

self callingproc current callingmethod

self calledclass current calledclass

2. XOTcl Idioms in the Next Scripting Language

- 31 -

2.7. Other Predefined Methods

2.8. Dispatch, Aliases, etc.

2.9. Assertions

XOTcl Next Scripting Language

self calledproc current calledmethod

self isnextcall current isnextcall

self next
Returns method-handle of the
method to be called via "next"
current next

self filterreg
Returns method-handle of the
filter method
current filterreg

self callinglevel current callinglevel

self activelevel current activelevel

XOTcl Next Scripting Language

/obj/ requireNamespace /obj/ require namespace

n.a. /obj/ require method

todo: to be done or omitted

In contrary to XOTcl, NX provides no pre-registered methods for assertion handling.
All assertion handling can e performed via the Next Scripting primitive
nsf::method::assertion.

2. XOTcl Idioms in the Next Scripting Language

- 32 -

2.10. Method Protection

XOTcl Next Scripting Language

/obj/ check /checkoptions/
::nsf::method::assertion /obj/ check
/checkoptions/

/obj/ info check ::nsf::method::assertion /obj/ check

/obj/ invar /conditions/
::nsf::method::assertion /obj/
object-invar /conditions/

/obj/ info invar ::nsf::method::assertion /obj/ object-invar

/cls/ instinvar /conditions/
::nsf::method::assertion /cls/ class-invar
/conditions/

/cls/ info instinvar ::nsf::method::assertion /cls/ class-invar

/cls/ invar /conditions/
::nsf::method::assertion /cls/
object-invar /conditions/

/cls/ info invar ::nsf::method::assertion /cls/ object-invar

As described above, NX supports method protection via the method modifiers
protected and public. A protected method can be only called from an object of that
class, while public methods can be called from every object. The method protection can
be used to every kind of method, such as e.g. scripted methods, aliases, forwarders, or
accessors. For invocations, the most specific definition (might be a mixin) is used for
determining the protection.

2. XOTcl Idioms in the Next Scripting Language

- 33 -

3.1. Resolvers

3.2. Parameters

3. Incompatibilities between XOTcl 1 and
XOTcl 2

The resolvers (variable resolvers, function resolvers) of the Next Scripting Framework
are used as well within XOTcl 2. When variable names or method names starting with
a single colon are used in XOTcl 1 scripts, conflicts will arise with the resolver. These
names must be replaced.

The following changes for parameters could be regarded as bug-fixes.

3.2.1. Parameter usage without a value

In XOTcl 1, it was possible to call a parameter method during object creation via the
dash-interface without a value (in the example below -x).

XOTcl example

Class Foo -parameter {x y}
Foo f1 -x -y 1

Such cases are most likely mistakes. All parameter configurations in XOTcl 2 require an
argument.

3.2.2. Ignored Parameter definitions

In XOTcl 1, a more specific parameter definition without a default was ignored when a
more general parameter definition with a default was present. In the example below, the
object b1 contained in XOTcl 1 incorrectly the parameter x (set via default from Foo),
while in XOTcl 2, the variable won’t be set.

XOTcl example

Class Foo -parameter {{x 1}}
Class Bar -superclass Foo -parameter x
Bar b1

3.2.3. Changing classes and superclasses

NX does not define the methods class and superclass (like XOTcl), but allows
to alter all object/class relations (including class/superclass/object-mixin/…)
nsf::relation::set. The class and superclass can be certainly queried in all variants
with info class or info superclasses.

NX example

nx::Class create Foo
Foo create f1

3. Incompatibilities between XOTcl 1 and XOTcl 2

- 34 -

3.3. Slots

3.4. Obsolete Commands

3.5. Stronger Checking

3.6. Exit Handlers

Version 2.0.0
Last updated 2014-12-06 14:58:42 CET

now alter the class of object f1
nsf::relation::set f1 class ::nx::Object

3.2.4. Overwriting procs/methods with objects and vice versa

NSF is now more conservative on object/method creation. In contrary to XOTcl 1 NSF
does not allow to redefined a pre-existing command (e.g. "set") with an object and vice
versa. Like in XOTcl 1, preexisting objects and classes con be redefined (necessary for
reloading objects/classes in an running interpreter).

3.2.5. Info heritage

info heritage returns in XOTcl 1 the transitive superclass hierarchy, which is
equivalent with info superclasses -closure and therefore not necessary. In
XOTcl 2 (and NX), info heritage includes as well the transitive per-class mixins.

All slot objects (also XOTcl slot objects) are now next-scripting objects of baseclass
::nx::Slot. The name of the experimental default-setter initcmd was changed to
defaultcmd. Code directly working on the slots objects has to be adapted.

Parameter-classes were rarely used and have been replaced by the more general object
parameterization. Therefore, cl info parameterclass has been removed.

The Next Scripting Framework performs stronger checking than XOTcl 1 For example,
the requiredness of slots in XOTcl 1 was just a comment, while XOTcl 2 enforces it.

The exit hander interface changed from a method of ::xotcl::Object into the Tcl
command ::nsf::exithandler:

NX example
::nsf::exithandler set|get|unset ?arg?

3. Incompatibilities between XOTcl 1 and XOTcl 2

- 35 -

	Migration Guide for the Next Scripting Language
	1. Differences Between XOTcl and NX
	1.1. Features of NX
	1.2. NX and XOTcl Scripts
	1.3. Using XOTcl 2.0 and the Next Scripting Language in a Single Interpreter

	2. XOTcl Idioms in the Next Scripting Language
	2.1. Defining Objects and Classes
	2.2. Defining Methods
	2.2.1. Scripted Methods Defined in the Init-block of a Class/Object or with Separate Calls
	2.2.2. Different Kinds of Methods
	2.2.3. Method Modifiers and Method Protection
	2.2.4. Method Deletion

	2.3. Resolvers
	2.3.1. Invoking Methods
	2.3.2. Accessing Own Instance Variables from Method Bodies
	2.3.3. Accessing Instance Variables of other Objects

	2.4. Parameters
	2.4.1. Parameters for Configuring Objects: Variables and Properties
	2.4.2. Delete Variable Handlers
	2.4.3. Method Parameters
	2.4.4. Return Value Checking

	2.5. Interceptors
	2.5.1. Register Mixin Classes and Mixin Guards
	2.5.2. Register Filters and Filter Guards

	2.6. Introspection
	2.6.1. List sub- and superclass relations
	2.6.2. List methods defined by classes
	2.6.3. List methods defined by objects
	2.6.4. Check existence of a method
	2.6.5. List callable methods
	2.6.6. List object/class where a specified method is defined
	2.6.7. List definition of scripted methods
	2.6.8. List Configure Parameters
	2.6.9. List Variable Declarations (property and variable)
	2.6.10. List Slots
	2.6.11. List Filter or Mixins
	2.6.12. List definition of methods defined by aliases, setters or forwarders
	2.6.13. List Method-Handles
	2.6.14. List type of a method
	2.6.15. List the scope of mixin classes
	2.6.16. Check properties of object and classes
	2.6.17. Call-stack Introspection

	2.7. Other Predefined Methods
	2.8. Dispatch, Aliases, etc.
	2.9. Assertions
	2.10. Method Protection

	3. Incompatibilities between XOTcl 1 and XOTcl 2
	3.1. Resolvers
	3.2. Parameters
	3.2.1. Parameter usage without a value
	3.2.2. Ignored Parameter definitions
	3.2.3. Changing classes and superclasses
	3.2.4. Overwriting procs/methods with objects and vice versa
	3.2.5. Info heritage

	3.3. Slots
	3.4. Obsolete Commands
	3.5. Stronger Checking
	3.6. Exit Handlers

