CIF documentation

Copyright (c) 2010, 2024 Contributors to the Eclipse Foundation

Version v3.0-RC1

Table of Contents

1. Synthesis-based engineering

1.1. Supervisory controllers
1.2. Engineering approaches for supervisory controller development
1.2.1. Traditional engineering
1.2.2. Model-based engineering
1.2.3. Verification-based engineering
1.2.4. Synthesis-based engineering
1.3. Synthesis-based engineering example
1.3.1. FIFO requirement
1.3.2. Synthesis-based engineering
1.3.3. Example benefits of synthesis-based engineering
1.4. Synthesis-based engineering in practice
1.4.1. Development process
1.4.2. Advanced topics
1.4.3. Synthesis-based engineering in practice example
1.5. Challenges in applying synthesis-based engineering
1.5.1. Change in way-of-working
1.5.2. Tool support

2. Language tutorial

2.1. Introduction

2.2. Lessons

2.3. Basics
2.3.1. Automata
2.3.2. Synchronizing events
2.3.3. Non-determinism
2.3.4. Alphabet
2.3.5. Event declaration placement
2.3.6. Shorter notations

2.4. Data
2.4.1. Discrete variables
2.4.2. Discrete variable value changes
2.4.3. Location/variable duality (1/2)
2.4.4. Location/variable duality (2/2)
2.4.5. Global read, local write
2.4.6. Monitoring
2.4.7. 0ld and new values in assignments
2.4.8. The tau event
2.4.9. Initial values of discrete variables

N a0 W Ww

10
15
16
23
24
24
26
27
29
35
38
45
45
46
47
47
47
33
33
54
37
39
61
63
65
65
66
67
68
70
71
75
79
81

2.4.10. Initialization predicates 83

2.4.11. Using locations as variables 85
2.4.12. State (exclusion) invariants 87
2.4.13. State/event exclusion invariants 91
2.5. Types and values 94
2.5.1. Types, values, and expressions 94
2.5.2. Values overview 95
2.5.3. Integers 96
2.5.4. Ranged integers 97
2.5.5. Reals 98
2.5.6. Booleans 99
2.5.7. Strings 99
2.5.8. Enumerations 99
2.5.9. Tuples 100
2.5.10. Lists 102
2.5.11. Bounded lists and arrays 105
2.5.12. Sets 106
2.5.13. Dictionaries 107
2.5.14. Combining values 109
2.5.15. If and switch expressions 109
2.6. Scalable solutions and reuse (1/2) 112
2.6.1. Constants 112
2.6.2. Algebraic variables 113
2.6.3. Algebraic variables and equations 115
2.6.4. Type declarations 117
2.7. Time 118
2.7.1. Timing 118
2.7.2. Continuous variables 120
2.7.3. Continuous variables and equations 122
2.7.4. Equations 124
2.7.5. Variables overview 125
2.7.6. Urgency 126
2.7.7. Deadlock and livelock 127
2.8. Channel communication 129
2.8.1. Channels 129
2.8.2. Dataless channels 132
2.8.3. Combining channel communication with event synchronization 133
2.9. Functions 136
2.9.1. Functions 136
2.9.2. Internal user-defined functions 136

2.9.3. Function statements 138

2.9.4. Functions as values 142

2.10. Scalable solutions and reuse (2/2) 144
2.10.1. Automaton definition/instantiation 144
2.10.2. Parametrized automaton definitions 145
2.10.3. Automaton definition parameters 147
2.10.4. Groups 154
2.10.5. Group definitions 155
2.10.6. Imports 159
2.10.7. Imports and libraries 160
2.10.8. Imports and groups 161
2.10.9. Namespaces 165
2.10.10. Input variables 165

2.11. Stochastics 168
2.11.1. Stochastics 168
2.11.2. Discrete, continuous, and constant distributions 169
2.11.3. Pseudo-randomness 172

2.12. Language extensions 173
2.12.1. Supervisory controller synthesis 173
2.12.2. Annotations 179

3. Language reference 182

3.1. Syntax 182
3.1.1. Lexical syntax 182
3.1.2. Grammar 187
3.1.3. CIF XML files 200

3.2. Annotations 200
3.2.1. Annotations 200
3.2.2. Built-in annotations 205

4. Tools 208

4.1. Specification tools 209
4.1.1. CIF text editor 209

4.2. Supervisory controller synthesis tools 210
4.2.1. Data-based supervisory controller synthesis 210
4.2.2. Event-based synthesis toolset 259
4.2.3. CIF to Supremica transformer 279

4.3. Simulation, validation, and verification tools 284
4.3.1. CIF simulator 284
4.3.2. CIF to mCRL2 transformer 446
4.3.3. CIF to UPPAAL transformer 457
4.3.4. Controller property checker 460

4.4. Real-time testing, code generation, and implementation tools 468

4.4.1. CIF code generator 468

4.4.2. CIF PLC code generator (stable) 506

4.4.3. CIF PLC code generator (experimental) 524

4.5. Miscellaneous tools 544
4.5.1. CIF to CIF transformer 544
4.5.2. CIF merger 636
4.5.3. CIF event disabler 644
4.5.4. CIF explorer 648
4.5.5. CIF to yEd transformer 651

4.6. Scripting 659
4.6.1. Introduction to scripting 659
4.6.2. Overview of scriptable tools 663

5. CIF examples 667
6. CIF release notes 668
6.1. Version 3.0 668
6.2. Version 2.0 (2023-12-22) 671
6.3. Version 1.0 (2023-09-30) 673
6.4. Version 0.10 (2023-06-30) 674
6.5. Version 0.9 (2023-03-31) 676
6.6. Version 0.8 (2022-12-21) 679
6.7. Version 0.7 (2022-09-30) 680
6.8. Version 0.6 (2022-07-07) 681
6.9. Version 0.5 (2022-03-29) 682
6.10. Version 0.4 (2021-12-17) 683
6.11. Version 0.3 (2021-10-01) 685
6.12. Version 0.2 (2021-07-07) 686
6.13. Version 0.1 (2021-04-02) 688

7. Developers 689
7.1. CIF language modification 689

8. CIF history 692
8.1. Conception 692
8.2.CIF 1 693
8.3. CIF 2 693
8.4. CIF 3 694
8.5. Eclipse ESCET 695

9. Legal 697

Index 699

CIF is a declarative modeling language for the specification of discrete event,
timed, and hybrid systems as a collection of synchronizing automata. The CIF
tooling supports the entire development process of controllers, including among
others specification, supervisory controller synthesis, simulation-based
validation and visualization, verification, real-time testing, and code generation.
Combined they enable a synthesis-based engineering approach to efficiently and
cost-effectively design and implement high-quality controllers.

CIF is one of the tools of the Eclipse ESCET™ project. Visit the project website for downloads,
installation instructions, source code, general tool usage information, information on how to
contribute, and more.

The documentation consists of:

» CIF synthesis-based engineering manual
* CIF language tutorial

» CIF language reference manual

* CIF tool manual

* CIF examples

* CIF release notes

* CIF developers manual

 CIF history (and why it’s called 'CIF’)

* Legal information

A screenshot showing a CIF model and simulation:

https://eclipse.dev/escet/v3.0-RC1

j- of 778M

File Edit MNavigate Search Project Run Window Help
B HE R DRS Y RE T oo Q (8 |few
=g
5 ProjectBxplo... 32 = O
[of] tankcif 53 % Plot Visualizer 53
G:D ? i 15= group tank: ~
viz CIFExant\p\es-OJ‘O.quahﬁer 18 cont V' =‘19,B,- 10 T T T B
~ [= hybrid 17 alg real Qi = controller.n * 5.@; 5
5 (= bouncing_ball 18 alg real Qo = sqrt(V);
5 (= conveyer 19 equation V' = Qi - Qo; 0
. 20
fluid
& UIk 21 svgout id "water” attr “"height” value 7.5 * v; -
v & tan 22 sugout id text value 5 10 15 20 25 30 35
|or| tank.cif 23 svgout id "Qi" text value fime
tank.cif trajdata 24 svgout id "Qo" text value
tonksv 35 end | — controllern — fankQl — fankQo lankV —— lank ¥’
tank.tooldef ig comat roll
© automaton controller: -
5 [synthesis 25 alg int n; SVG Visualizer 33
> [= timed 29 n
38 location closed:
31 initial; T
32 equation n = @; i Qi=50
33 edge when tank.V <= 2 gote opened; |
34 i
35 location opened: v
< >
[=5] State Visualizer 32
Name Value »
i time 38,
9 ocontroller opened
< > -
~.controllern 1
[¥+] Applications 53 =g -tank.Qi 30 v < >
(s
" § = -) - _ =
Pr Propert Consol E El +S-=0
v W ToolDef interpreter - (Pt | |feres Seasre s EBEE B~
W CIF simulator ToolDef interpreter [TERMINATED after 425 638ms] /CIFExamples-0.1.0.qualifier/hybrid/tank/tank.tooldef (started at 2020-03-07 14:28:53.278)
~
Transition: delaying for 3.1883885325514274 time units at time 36.918671836315674
Simulation was terminated per the user's request.
v
<

1. Synthesis-based engineering

CIF supports synthesis-based engineering, an engineering approach to design and implement
supervisory controllers. The engineering approach combines model-based engineering with
computer-aided design to produce correct-by-construction controllers. It does so by automating as
many steps as possible in the development process.

Supervisory controller synthesis is a main element of synthesis-based engineering, and a key
feature of CIF. It involves the automatic generation of supervisory controller models.
Implementation of the controller is achieved through (implementation language) code generation,
improving speed and reducing the number of errors introduced at this stage. Combined, they allow
engineers to focus on what the controller should do, rather than how it should do it, and how this is
to be implemented.

Synthesis-based engineering has many more benefits. As the engineering approach uses well-
defined models, designs can be discussed, analyzed, model-checked, or simulated. That allows
finding and correcting issues early in the development process, rather than during later stages
where correcting them is more costly. It also supports a comprehensive modular design and
efficient incremental engineering. Ultimately, this reduces development time and improves the
quality of the resulting supervisory controllers.

Supervisory controllers

Explains what supervisory controllers are, in what types of systems you can find them, and
where they are located within such systems.

Engineering approaches for supervisory controller development

Discusses synthesis-based engineering of supervisory controllers, its benefits, and its relation to
other engineering approaches.

Synthesis-based engineering example

Demonstrates the value of synthesis-based engineering through an example.

Synthesis-based engineering in practice

Explains concretely how to use the CIF language and toolset to apply synthesis-based
engineering of supervisory controllers.

Challenges in applying synthesis-based engineering

Explains the challenges of embedding a synthesis-based engineering approach into industrial
practice.

1.1. Supervisory controllers

Automated systems are all around us. For instance, hospitals use X-ray and MRI systems, industrial
printers print books and magazines, lithography systems are essential for the production of

computer chips, and waterway locks bring ships from one water level to another. In today’s digital
age, all these systems contain software that controls their operation. Such systems are often called
cyber-physical systems, for the physical part that consists of the hardware components being
controlled, and the cyber part that contains the software that controls those physical parts.

Today’s cyber-physical systems are often highly complex. To manage their complexity, they are
typically step-by-step divided into sub-systems, sub-sub-systems, etc, each with their own
responsibility. This way, at the most sub-divided level, components are obtained that are small
enough to be developed, tested and maintained in isolation. The components are often divided over
several layers, to form a layered system architecture.

The control of a system can similarly be sub-divided and layered. The following figure shows a
traditional view on the control of a system:

(Human operator >

[

Y

< Supervisory controller(s))

F Y

Y

< Resource controller(s))

[

': Actuators i l: SOrS

Mechanical components >

At the bottom are the mechanical components, such as motors, switches, levers and valves. Their
operation can be steered through actuators and their state of operation can be observed through
sensors. Resource controllers provide a first level of control. They may for instance correct for
sensor jitter, translate continuous signals to discrete ones, or detect and even correct anomalous
situations.

A supervisory controller provides higher-level control. It is typically responsible for the correct and
safe behavior of a (sub-)system. For instance, it could be responsible for preventing damage to
mechanical components or human operators. It may prevent collisions with or among mechanical
components, or prevent mechanical components from overheating. It could control a single sub-
system, coordinating one or more resource controllers. However, in case of a layered architecture,
it could also coordinate multiple supervisory controllers of a lower layer. Supervisory controllers
can thus be found at various levels of a system architecture.

https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Supervisory_control

Some systems are fully automated, without the need for human intervention or control. However,
most systems provide some kind of human-machine interface that allows a human operator to
monitor the system and if necessary control its operation.

Regardless of the exact system architecture, and whether human intervention is possible or not,
supervisory controllers play an essential role in the safe control of all kinds of cyber-physical
systems, and can be found at various levels within such systems.

1.2. Engineering approaches for supervisory
controller development

Supervisory controllers can be developed in various ways. The following figure gives an overview.
It shows multiple approaches to design and engineer supervisory controllers, as well as how these
approaches relate to each other:

Engineering approach -> Traditional Model-Based Verification-Based Synthesis-Based
Engineering Engineering Engineering Engineering
J Development step

Requirements design Document-based Document-based Model-based (formal) Model-based (formal)

Controller design Document-based Model-based (formal) Model-based (formal) Computer-aided (formal)

Realization in software Traditional software Code generation Code generation Code generation
(implementation code) engineering (coding) (fault-free code) (fault-free code) (fault-free code)

Verification Testing Testing + Formal verification Correct-by-construction
(against requirements) Model-based testing (model checking) (guaranteed)

Validation Testing Testing + Testing + Testing +
(of requirements) Simulation Simulation Simulation

Legend: Manual work / Focus (Semi-)automatic

The columns indicate various engineering approaches. From left to right, they employ
progressively more automation and computer assistance. The rows of the table indicate typical
steps involved in the development of supervisory controllers. The cells indicate for each approach
what is involved for the particular step. The green colored cells indicate that the step involves
mostly, or at least significant, manual work for the particular engineering approach. Contrarily, the
gray colored cells indicate that the step is (mostly) automated for that approach. As the steps with
more manual work generally require the most engineering effort, the green cells also indicate
where the engineering focus is for a particular approach. Bold texts in cells indicate changes
compared to the previous column.

Typical steps involved in the development of supervisory controllers, as represented by the rows
from top to bottom, are:

* Requirements design focuses on what a controller for a (sub-)system must do. Functional and
safety requirements may be specified, for instance requiring that pushing an emergency button
stops all motors. Extra-functional requirements may also be specified, for instance requiring
that a certain throughput should be achieved.

* Controller design focuses on how a controller should satisfy the requirements to efficiently
and safely control the system. For instance, the various control states of the system may be
specified, as well as how the controller reacts to changing sensor or other input signals by
controlling actuators, e.g., enabling a motor.

* Controllers may be realized in software. The software source code may for instance be
implemented using Java, C or PLC programming languages.

 Verification involves checking the realized controller against its requirements design and
controller design, to ensure that the controller is correctly realized. The system, controlled by
the controller, should behave as designed.

* Validation involves checking the realized controller and its design, to ensure that the right
controller is made. That is, the requirements must be correct and complete, such that the
controller ensures that the system operates safely and efficiently in all circumstances.

Typically, the various engineering approaches as represented by the columns from left to right, can
be characterized as follows:

* Traditional engineering is document-based. Requirements are written down informally in
large requirement documents. They are used as input for controller design documents. The
documents are then handed over to a different person, team or supplier, for the
implementation. Implementation of the controller in software is done through manual coding.
Verification and validation involve testing at various levels, including unit testing, integration
testing and system testing. Traditionally, all five steps are performed manually, which is
laborious and error-prone.

* Model-based engineering or model-driven engineering automates the realization step, and
provides computer assistance especially for the verification and validation steps. It places
models at the center of attention. The controller is modeled in a formal way, allowing a
computer to interpret and analyze its behavior. That is, it is specified in a mathematically
unambiguous way, for instance using state machines. Such models are considered the single
source of truth. From them, all kinds of artifacts can be generated automatically, including the
software code of the controller’s implementation. This ensures that the code is fault-free and
behaves consistently with the behavior as expressed by the controller model. The models can
also be used to partly automate verification, for instance through the use of model-based
testing. Simulation models can be used to simulate the (controlled) system behavior and
validate the requirements during early phases of development.

» Verification-based engineering is a form of model-based engineering with computer-
assistance to automate the verification step. It uses formal verification, or model checking, a
mathematical technique that can automatically check the controller model against its
requirements. To employ formal verification, both the controller model and the requirements
must be formally specified. Formal verification then either indicates that the specified
requirements are guaranteed to be satisfied by the controller model, or it provides counter
examples that indicate in which situations they are not satisfied. This is exhaustive, as it
considers every conceivable scenario, unlike testing, which typically covers only a limited
number of scenarios. Through formal verification, the controller model can be iteratively
adapted to satisfy all specified requirements in every possible situation.

» Synthesis-based engineering is a form of model-based engineering with computer-assistance
to automate the design of the controller. It uses supervisory controller synthesis to
automatically synthesize a controller model from requirements and a simple model of the to-be-
controlled system. This mathematical technique guarantees that the synthesized controller
model satisfies all specified requirements. This makes verification of the controller model
against its requirements superfluous, as the synthesized controller model is guaranteed correct-
by-construction. With the controller design, realization and verification either being automated
or unnecessary, only requirements design and validation remain. This allows engineers to focus
on what the controller should do, rather than how it should achieve it.

The use of model-based engineering combined with computer-aided design, through formal
methods like formal verification and supervisory controller synthesis, has many advantages. It
allows to produce unambiguous, complete, consistent, and up-to-date specifications, leading to
higher quality controllers at similar or even lower effort and costs.

After this general comparison of the approaches, the following provides more detailed information:

» Traditional engineering

Model-based engineering

Verification-based engineering

Synthesis-based engineering

1.2.1. Traditional engineering

The following figure shows a simplified development process for traditional engineering of
supervisory controllers:

Verification Validation

7 \ Manual ()’ (L

Design documents: implementation Implementation of
* Requirements the controller
* Controller design (control software)
\ J J
Design (specification) Realization (implementation)

Traditionally, controllers are first specified in design documents. They for instance list their
functional and safety requirements, describe their control states and indicate when the controller
should actuate the various actuators depending on changing sensor signals.

Subsequently, the controller is manually implemented in software code through the use of a
programming language, such as PLC code for a PLC platform, or Java or C++ code for an industrial
PC.

Finally, the implementation is verified and validated, typically by means of testing. Verification
involves checking and ultimately ensuring that the controller satisfies its specified requirements.
Validation involves checking that the controller exhibits the desired behavior, and thus ensuring it
is the desired controller. Since a controller must satisfy its specified requirements, this includes
validating the requirements to ensure they are the desired requirements.

Downsides of traditional engineering

Traditional engineering has been around for a long time. Companies typically know what works
and what doesn’t, and how to work around the various challenging aspects of it. It can work well,
particularly for small and simple systems, developed by a well-managed but small team. However,
the approach has several disadvantages. These become especially apparent when applying it to
develop controllers for larger and more complex systems, developed by multiple teams, or with
some development activities outsourced to suppliers:

Ambiguity
It is extremely difficult to unambiguously write down the control requirements in a document.
Often textual descriptions in natural languages can be interpreted in various ways.

The domain expert who writes the requirements has a certain mental picture in their mind.
However, software engineers responsible for realizing these requirements in the software
implementation may interpret them differently after forming their own mental picture. There is
often a big gap between the specification of the design and its implementation.

The documents may also serve as input or as a contract to a supplier to develop the control

software. Then the impact and costs of ambiguity can be huge, much more so than when the
implementation is done in-house within the company.

Incompleteness and inconsistency

Besides the interpretation of the requirements also their completeness and consistency is
important. Often the normally occurring situations (happy flow) is adequately covered by the
requirements. However, the edge cases and exceptional circumstances are just as important,
especially when safety is of critical importance to the system.

Consider for instance requirements for when the hardware fails, such as when a cable breaks or
a sensor becomes defect. Such cases are often far more complex and the number of
combinations/interactions that has to be considered can be immense. Ensuring that the textual
descriptions of all these cases do not lead to inconsistencies is often practically undoable.

A good domain expert will be able to limit the number of mistakes, such as missing
requirements and contradictions in the requirements specification, but typically can’t
completely eliminate them. A good software/PLC engineer will surely spot some of the
remaining mistakes during the implementation and testing of the controller.

However, even thoroughly tested and delivered industrial code often still contains faults.
Furthermore, if the specification is incomplete, software engineers will make their own choices,
which may or may not match with what the domain expert had in mind. Again, working with
external suppliers, rather than doing the development in-house within the company, may
aggravate these concerns.

Multi-disciplinary systems
The multi-disciplinary nature of design versus implementation also plays a role. A domain
expert may know everything about the functional requirements of the system. The software
engineer, especially one from a supplier, may lack such knowledge. They come from different
domains, often use different technical terms, and thus essentially speak different languages. This
makes it more difficult for them to understand each other, and hinders communication.

Abstraction levels

Furthermore, there is a difference in level of abstraction between design and realization. The
control requirements are often written as functional specifications. For the implementation
numerous details of a lower abstraction level play a role, such as data structures, message
encodings and byte orderings. A functional specification typically does not concern itself with
such aspects. Again, people from different disciplines and domains may not be able to effectively
communicate with each other.

Mixing design with implementation aspects

The situation becomes even more complex if (unintentionally) during the design also
implementation aspects are incorporated into the functional specification. Then the clear
separation between design and realization is lost. This often leads to more misunderstandings,
which then requires more communication and collaboration to resolve.

Outdated documentation

Another aspect to consider for specifications in documentation, is that any changes, such as bug
fixes and new features, are often only implemented in the software. After a while the documents
become more and more outdated and thus unusable. This increases the gap between
specification and implementation.

1.2.2. Model-based engineering

Model-based design, model-based software/system engineering and model-driven engineering, are
related terms. They place models at the center of the entire development process and the entire
lifecycle of the system, including design, implementation and maintenance. The models fill the gap
between the specification and implementation.

Model-based engineering process

The following figure shows a simplified development process for model-based engineering of
supervisory controllers:

Verification Validation

Manual
implementation or
Design documents:] Manual modeling code generation (Implementation of
* Requirements > Controller model > the controller
* Controller design J L J (control software)
l I J
Design (specification) Realization (implementation)

At the center is a controller model, a model of a controller that unambiguously specifies how the
controller works. It precisely specifies how the state of the controller changes when a sensor signal
changes, and under what conditions and in which states an actuator may be turned on or off.
Ideally, the model has a mathematical foundation. It may for instance be modeled as one or more
state machines.

The controller model is manually modeled from design documents. They for instance list the
functional and safety requirements of the controller, describe its control states and indicate when it
should actuate the various actuators depending on changing sensor signals.

The controller model must be verified and validated. Verification involves checking and ultimately
ensuring that the system, controlled by the controller, satisfies its specified requirements.
Validation involves checking that the controller ensures the desired system behavior, and thus
ensuring it is the desired controller. Since a controller must satisfy its specified requirements, this
includes validating the requirements to ensure they are the desired requirements. This may be

supported by formal methods, methods with a mathematical foundation, and supported by
computer tools. For instance, a controller model may be simulated. This may reveal issues, that can
be addressed to improve the controller model.

The control software is typically implemented using a programming language, such as PLC code for
a PLC platform, or Java or C++ code for an industrial PC. This may for instance be done in-house
within the company, by different teams or departments, or by a supplier. While manual
implementation is possible, the code is often automatically generated from the controller model.

Benefits of model-based engineering

Model-based engineering directly addresses many of the downsides of traditional engineering:

Unambiguous and intuitive specifications

It is important that the models are formal models, with a mathematical meaning (semantics).
Examples of formal models are state machines to model controllers and logical formulas for
model requirements. The use of such formal models leads to unambiguous interpretation of
control requirements and controller behavior.

The use of the right formal language, in which control requirements can be specified in an
intuitive manner is essential. This is where domain specific languages (DLSs) play a role. Such a
language closely matches the world of the domain experts, such that they can directly write
their control requirements in a notation that fits how they think about the system. This leads to
readable and unambiguous specifications.

Besides specific to a domain, domain specific languages are also more restrictive in what you
can write down than a general programming language. While this seems to be a limitation, it is
actually their strength. Due to the limited number of concepts to consider, there are less
different ways to model a system. This further reduces ambiguity, due to more consistency and
simpler specifications.

Bridges the multi-disciplinary specification/implementation gap

Using a good domain specific language, both domain experts and software engineers can
understand and interpret the specification in the same way, regardless of their different
backgrounds. Obviously, the language must be rich enough to properly describe all relevant
aspects of the domain. It must also use a proper abstraction level.

Complete and consistent specifications through computer-aided validation and verification

The use of unambiguous formal models has even more advantages, as it makes it possible for a
computer to interpret and analyze the models. The limited concepts of the domain specific

language help to do so efficiently and scalably. Computers can with formal methods,
mathematical techniques, quickly and accurately analyze countless scenarios. This is a great
advantage compared to traditional document reviews.

An example of this is verification by means of model-based testing. Instead of manually writing
dozens or hundreds of tests, a computer can automatically generate thousands, millions or even
more tests from the controller model. This allows covering much more behavioral scenarios,
increasing confidence in correctness of the controller model and its implementation.

Another example of this is validation of the specification by means of simulation. Using
simulation various execution scenarios can be examined, to give insight into the behavior of the
system being controlled by the controller. This provides new insights that can be used to further
improve the specification. Especially for complex situations, which are difficult to understand,
this is of great value.

The use of computer-aided verification and validation often exposes issues in the specification.
Model-based testing for instance, may find that a certain scenario was not considered during
controller design, and therefore does not satisfy the requirements. The controller model may
then be adapted and tested again. This allows to effectively and iteratively improve the design,
leading to more complete and consistent specifications, and therefore to better quality
controllers.

Address issues early to reduce effort and costs

A great benefit of model-based engineering is that verification and validation can be done
already during the earlier phases of development, rather than only at later phases such as
implementation or testing. It is well-known in industry that the later a mistake is found and
fixed, the higher the effort and costs to do so. In practice, implementations developed using
model-based engineering approaches are often produced more efficiently and with less
mistakes. Through automation, changes can be incorporated more quickly into the models, and
these can automatically be analyzed again.

Furthermore, the benefit of discussions that may arise early on during the development process,
for instance about how the specification must be adapted if it is found lacking, is not to be
underestimated. It is of great value that so early on it is possible to discuss control requirements
and the behavior of the system during unforeseen circumstances, such as when a sensor is
defect.

Efficiently obtain correct-by-construction implementations

After several iterations the confidence in the controller specification is sufficiently high, and
thus the chance of incompleteness and inconsistencies sufficiently low, given the amount of
effort and money that can reasonably be spent during the development process. The
development process produces an implementation-independent model of the control logic, that
during the realization can be implemented. This may be done by a different team or department

within the same company, or even by an external supplier. The formal specifications can then
serve as a contract with the third party, allowing for more control. They can also be used to
perform acceptance tests on the implementation.

While the controller can be manually implemented based on the controller model, automatic
generation of the control software is often a better choice. Automation prevents the kinds of
subtle mistakes that humans make when they manually implement something, ensuring
consistency between the specification and the implementation. Automation also improves
efficiency. If the controller model is changed, with the push of a button a new correct-by-
construction implementation can quickly be generated from it.

Implementation-independent models separate design from implementation

Since a controller model is implementation-independent, there is a clear separation between
design (specification) and realization (implementation). It allows generating implementation
code for different platforms, such as industrial PCs or PLCs, with different programming
languages, such as Java, C or PLC code, for 32 or 64 bits architectures, etc. Additionally, controller
models are vendor-independent, allowing to for instance generate PLC code for PLCs from
different vendors. It is also possible to switch to a different platform or vendor at a later time, or
additionally generate code for other platforms or vendors.

Up-to-date models are the single source of truth

Model-based engineering places models at the center of attention. It is the models that are
adapted if they are functionally incorrect, have inconsistencies, or new functionality is required.
Techniques such as model-based testing, simulation, and code generation all operate on the
models. The models are therefore the 'single source of truth'. Contrary to documents, the models
will be maintained. They remain up-to-date as they are the basis of all development during the
entire life cycle of the system, including design, realization and maintenance.

The use of model-based engineering combined with computer-aided design through formal
methods thus has many advantages. It allows for producing unambiguous, complete, consistent,
and up-to-date specifications, leading to higher quality controllers at similar or even lower effort
and costs. However, specific forms of model-based engineering, such as verification-based and
synthesis-based engineering, can offer additional benefits.

Even though model-based engineering has many benefits, companies should not underestimate
how significantly different it is from traditional engineering. They should consider and manage the
challenges particular to this engineering approach.

Terminology

The following terminology is often used when discussing model-based engineering of supervisory
controllers:

Code generation

The automatic generation of correct-by-construction control software from a controller model.

Control requirements

Properties that a system must satisfy, even if they are not satisfied in the uncontrolled system.
Examples include functional and safety properties. They are called control requirements, or
simply requirements.

Control software

The implementation of the controller in software. For instance, PLC code for a PLC platform, or
Java or C++ code for an industrial PC.

Controller model

A model of a controller that unambiguously specifies how the entire controller works. Also
called a supervisory controller, or simply controller, in control theory. It precisely specifies how
the state of the controller changes when a sensor signal changes, and under what conditions and
in which states an actuator may be turned on or off.

Controller validation

The process of checking and ultimately ensuring that the system being controlled by a controller
exhibits the desired behavior, and thus ensuring that the controller is the desired controller.
Since a controller (model) must satisfy its specified requirements, this includes validating the
requirements to ensure they are the desired requirements.

Controller verification

The process of checking and ultimately ensuring that the controller satisfies its specified
requirements.

Domain-specific language

A modeling language with concepts specific to a certain domain. This can for be the domain of
supervisory controllers with concepts such as plants and requirements, or the domain of office
lighting systems with concepts such as lamps and occupancy sensors.

Formal method

A method with a mathematical foundation, typically supported by computer tools. For instance,

https://en.wikipedia.org/wiki/Control_theory

formal verification or supervisor synthesis.

Model

An unambiguous representation of all relevant concepts, ideally with a mathematical
foundation. For instance, a model of control requirements in the form of logical formulas, or a
model of a controller represented as a state machine.

Model-based development/engineering

Places models at the center of the entire development process and the entire lifecycle of the
system, including design, implementation and maintenance.

Modeling language

A language in which models can be specified, in an unambiguous way, and ideally also with
mathematical foundation.

1.2.3. Verification-based engineering

Verification-based engineering is a form of model-based engineering. It uses formal verification to
automate the verification that the controller model satisfies its requirements.

Verification-based engineering process

The following figure shows a simplified development process for verification-based engineering of
supervisory controllers:

Verification Validation

Manual
implementation or
Design documents:] Manual modeling code generation (Implementation of
* Requirements > Controller model > the controller
* Controller design J L J (control software)
l I J
Design (specification) Realization (implementation)

The verification-based engineering process is very much similar to the model-based engineering
process. The only difference is the way the verification of the controller (model) against its specified
requirements is performed. Verification-based engineering uses formal verification, or model
checking, to mathematically prove a certain property holds. Such properties could for instance be
the absence of deadlock or livelock, or that a bridge may only open if its corresponding traffic lights

have been set to signal a red light. Formal verification can prove that such properties hold for every
conceivable scenario.

If a property does not hold, formal verification produces counter examples, typically in the form of
a sequences of inputs that lead to states in the controller model where the property is not satisfied.
This makes it possible to pinpoint the problem in the model, and address it. It is often an iterative
process to address such issues, perform verification again, address more issues, perform
verification again, etc. If no counter examples are produced, all verified properties are guaranteed
to be satisfied by the controller model.

To employ formal verification not only the controller model must be formally specified, but also the
properties to check. This means that the requirements are no longer specified in natural language
in documents, but in mathematically unambiguous specifications. An example is state machines
that define the order in which things may happen, such as that a certain sensor must go on before
an actuator can be enabled. Another example is logical formulas that indicate that certain
combinations of states in the controller models should never occur, e.g., they could indicate a
collision that is to be prevented.

Benefits of verification-based engineering

Verification-based engineering has all the benefits of model-based engineering. Additionally, it has
the following benefit:

Formal verification guarantees that the requirements are satisfied

Formal verification considers every conceivable scenario. It can therefore mathematically prove
that a specified requirement is satisfied by the controller (model). It is thus more powerful than
testing, which typically covers only a limited number of scenarios and is then not exhaustive.

Even though verification-based engineering has many benefits, companies should not
underestimate how significantly different it is from traditional engineering or even from lesser-
automated forms of model-based engineering. They should consider and manage the challenges
particular to this engineering approach.

1.2.4. Synthesis-based engineering

Synthesis-based engineering is a form of model-based engineering. It uses supervisory controller
synthesis (or simply supervisor synthesis) to automatically synthesize a correct-by-construction
controller model.

Synthesis-based engineering process

The following figure shows a simplified development process for synthesis-based engineering of
supervisory controllers:

/ Model-based \ Validation

specification Q
~, | Supervisor synthesis Manual
Model of (supervisory implementation or
uncontrolled system controller synthesis}\(Controller model] code generation \(Implementation of

(plant model)) o s el > the controller
(control software)
” Model of control)

requirements
(requirements

& model) y
l I J

Design (specification) Realization (implementation)

As with general model-based engineering, at the center is a controller model with a mathematical
foundation. From the controller model, the control software can still be manually implemented or
automatically generated.

However, with synthesis-based engineering, the controller model is not manually modeled from
design documents. Instead, it is automatically generated from models of the uncontrolled system
(plant model) and control requirements (requirements model).

Verification to ensure that the controller (model) satisfies its specified requirements is then
superfluous, as the synthesized controller model is correct-by-construction. The controller model
must however still be validated to ensure it behaves as intended. The specified requirements could
not be the desired requirements, as they could for instance be wrongly specified or too strict,
resulting in the system being controlled by the controller exhibiting unwanted or insufficient
behavior.

Input: plant and requirements models

Supervisor synthesis requires two types of models as input. The first type of model is called a plant
model, after the concept of plant from control theory. Plant models describe capabilities or
behavior of a physical system 'as is', without any integrated control. They represent the possible
behavior of the uncontrolled system. The second type of model is called a requirements model.
Requirements models describe the requirements that the controller must adhere to. They model
restrictions upon the behavior of the plants, to ensure that only the desired behavior remains.

A plant model can for instance specify which sensors and actuators are present in the system. It
may also specify their interdependencies. For instance, a sensor that indicates that a gate is open
and a sensor that indicates it is closed, can under normal circumstances not be enabled at the same
time. A plant model is often modeled as a state machine. The following figure shows as an example
a the combined plant model for the two gate sensors:

closed _off open_on
T T —

— closed in_between open

___\
~_ -

closed_on open_off

https://en.wikipedia.org/wiki/Plant_(control_theory)
https://en.wikipedia.org/wiki/Control_theory

Initially it is closed. As the gate is opened, the gate closed sensor goes off, and the gate is somewhere
in between. Then it can be closed again, making the gate closed sensor go on. But the gate can also
keep going further open, until it is fully opened, and the gate open sensor goes on. There is can be
closed again, making the gate open sensor go off. The plant model clearly states that it is not
possible for the gate to be open and closed at the same time, as the plant model can only be in one
state at a time.

Actions, such a sensor going on or off, or an actuator being turned on or off, are called events.
Supervisor synthesis distinguishes two types of events, controllable and uncontrollable events.
Controllable events can be controlled by the supervisory controller. Actuators are typically
modelled as controllable events, such that the supervisory controller decides when to actuate them.
Uncontrollable events operate autonomously, from the perspective of the supervisory controller. A
controller can not prevent such events from occurring in the system. For instance, a user may push
a button and the corresponding sensor will indicate whether the button is pushed or not. The
events to indicate changes in the status of the sensor will happen. The supervisor can not prevent
this. Another example of uncontrollable events is limit sensors of movements. When a movement is
completed, its limit sensor will be activated, leading to an uncontrollable event being fired.

Plant models at the relatively low abstraction level of sensors and actuators are quite common.
However, modeling and controlling (sub-)systems at a higher abstraction level is possible as well.
See for more information the section on supervisory controllers.

A requirements model captures requirements. It may specify functional requirements, safety
requirements, etc. For instance, the motor to open a gate may only be activated once the barrier to
stop traffic is fully closed. Control requirements can also be specified as state machines, but often
the use of a logical formula is more intuitive. Combining them is also possible. Well-formulated
logical formulas are easy to understand, even for people without a mathematical background. As
an example, consider a requirement in three forms: natural language, mathematical formula, and
modeled in CIF:

* Natural language: "The actuator to open the gate may only be activated if the barrier is fully
closed.”

» Mathematical formula: gate_open_actuator.c_on = barrier_sensors.closed

* Modeled in CIF as a state/event exclusion requirement:

requirement gate_open_actuator.c_on needs barrier_sensors.closed;

Supervisory controller synthesis

Supervisory controller synthesis generates from the plant and requirements models a controller
model, a model of the control logic, named a supervisor or supervisory controller. The synthesized
supervisor is correct-by-construction, i.e., it satisfy all the requirements in every situation.

The supervisor may be represented as another state machine, but it may for instance also be a list
of conditions under which actuators may be activated or deactivated. The synthesized supervisor as
a state machine, or the plant model together with the supervisor in the form of extra synthesized
control conditions, forms the controlled system.

The controlled system is guaranteed to satisfy the following properties:

» Safe: It satisfies all specified requirements in all situations that the specified uncontrolled
system can be in.

» Controllable: It only limits controllable events of the plant, e.g., it may prevent enabling or
disabling an actuator, but can’t prevent a sensor from going on or off.

* Non-blocking: It doesn’t block, i.e., a marked state can always be reached from every reachable
state, thus ensuring a form of liveness.

* Maximally permissive: It does not impose more restrictions than strictly necessary to enforce
the previous properties, i.e., it is maximally permissive. In other words, the controlled system
permits all safe, controllable, and non-blocking behaviors, i.e., it is minimally restrictive.

In practice the terms supervisor and controller are often used interchangeably. Formally however,
they can be different. A supervisor is maximally permissive and may still allow multiple (safe)
choices, for instance between enabling multiple different actuators, or between enabling one
actuator and disabling another one. A controller is considered to explicitly choose specific
controllable events rather than allowing multiple ones.

Benefits of synthesis-based engineering

Synthesis-based engineering has all the benefits of model-based engineering. Additionally, it has the
following benefits:

https://en.wikipedia.org/wiki/Liveness

Computer-aided design for improved quality at reduced effort and cost

Computer-aided design and automation shorten the development cycle and reduce human
errors. This improves the quality and reliability of controllers, and reduces effort and costs.

More concretely, supervisor synthesis provides computer-aided design assistance. It can for
instance automatically detect conflicting requirements. It will also detect that a certain activator
may never be enabled in a certain state, because under certain specific conditions this may later
lead to an unavoidable unsafe state. For complex systems, this kind of situations are often
difficult to foresee for human beings. It is therefore difficult to correctly manually model them
in a controller model.

Focus on the what rather than the how

With synthesis-based engineering the controller model is automatically synthesized. From it, the
implementation is automatically produced through code generation. Verification is not needed
as the implementation is correct-by-construction. This essentially only leaves requirements
design and validation to focus on. Engineers can thus focus on 'what should the controller do' (its
requirements), rather than on 'how must the controller achieve this' (the controller design and
implementation).

An example is specifying a First-In-First-Out (FIFO) requirement. While specifying it may be
quite easy, realizing the requirement in a controller model may be complex due to the various
situations that may arise in the system. Supervisory controller synthesis can evaluate all possible
combinations of conditions and synthesize a controller that is mathematically correct for all of
them. This kind of design automation is even more useful when multiple, complex and related
requirements need to be considered. The synthesized supervisor is correct-by-construction for
all requirements in all situations, preventing human errors.

Verification exposes problems, synthesis solves them

Synthesis-based engineering goes far beyond verification-based engineering. Formal verification
exposes problems. It tells you that the controller model is not correct and in which situations,
and you need to iteratively adapt it yourself. Each time formal verification produces a counter
example to indicate a requirement violation, the controller model needs to be manually adapted.
Contrary, supervisor synthesis provides solutions. It automatically synthesizes a controller
model that satisfies all the requirements. Synthesis produces in one go a supervisor with all the
additional conditions that must be enforced to ensure all requirements are satisfied. This makes
verification of the controller model against its requirements superfluous, as the synthesized
controller model is already correct-by-construction.

Maintain maximum design space freedom

Maximal permissiveness ensures that maximum design space freedom is maintained. When
manually designing a controller, an engineer may favor simple control conditions that severely
limit the design space. As synthesis produces maximally-permissive supervisors, it imposes
minimal restrictions, while still satisfying all requirements. This leaves design space freedom to

e.g. choose performance-optimal solution among safe alternatives. A performance-optimal
controller may for instance be derived from a supervisor model that allows multiple (safe)
choices.

Supports a comprehensive modular design and efficient incremental engineering

Each part of the plant and each requirement can be specified separately. This way it is easy to
adapt specific plants or requirements, or add new ones. Modular specifications thus allow for
efficient incremental engineering, as after each change a simple re-synthesis is enough to obtain
a new correct-by-construction controller.

Supports reuse and standardization

The separately specified plants and requirements can even be put in libraries with reusable
standardized building blocks. This allows engineers to easily build up new specifications from
existing proven building blocks, combining them in different ways. Ultimately this leads to more
uniformity and improves efficiency.

Intuitive specifications with fine-grained requirement traceability

Each plant and requirement can be specified separately, and has a clear purpose. This provides a
good overview of the control requirements, and allows for fine-grained requirement traceability.
This unlike the controller model itself. There, one requirement can have an effect on various
parts (states) of the controller. It can thus be spread out over the controller model, and mixed
with other requirements. Clear modular specifications avoid hiding undesired and unneeded
behavior in a large/complex controller.

See the synthesis-based engineering example section for a concrete example that shows the power
of synthesis.

Even though synthesis-based engineering has many benefits, companies should not underestimate
how significantly different it is from traditional engineering or even from lesser-automated forms
of model-based engineering, such as verification-based engineering. They should consider and
manage the challenges particular to this engineering approach.

Terminology

The following terminology is often used when discussing synthesis-based engineering of
supervisory controllers, in additional to model-based engineering terminology:

Controllable event

An event that is controlled (enabled or disabled) by the controller. Events to actuate (turn on or
off) an actuator are often controllable events.

Controlled system

The uncontrolled system together with a supervisor or controller that controls it. This may be
represented as a single state machine, or as a combination of the _plant model with the supervisor
or controller model.

Controller

A controller model that explicitly chooses specific controllable events, rather than allowing
multiple ones as a supervisor may do. When this distinction is not relevant, supervisor and
controller are often used interchangeably.

Correct-by-construction formal method

A formal method that guarantees that the result of the method satisfies all requirements.

Event

An action representing something that can happen in the system. For instance, there may be
low-level actions for sensors going on or off, and actuators being turned on or off. There may
also be higher level actions, such as a command to move an object from one location to another,
a command to turn an entire subsystem on or off, or an event through which a subsystem
indicates that an error has occurred.

Synthesis-based engineering

A form of model-based engineering that uses supervisory controller synthesis (or simply
supervisor synthesis) to automatically synthesize a correct-by-construction controller model.

Supervisor

A maximally permissive controller model that may still allow multiple (safe) choices. Unlike a
controller, it may for instance allow a choice between enabling multiple different actuators, or
between enabling one actuator and disabling another one. When this distinction is not relevant,
supervisor and controller are often used interchangeably.

Supervisor synthesis

A correct-by-construction formal method that automatically synthesizes a supervisor. It involves
the automatic generation, or synthesis, of a correct-by-construction controller model from a
simple model of the to-be-controlled system and a model of the control requirements. This is also
called controller synthesis or supervisory controller synthesis. Supervisor synthesis makes
verification of the resulting controller model against its requirements superfluous. Validation of
the resulting system being controlled by the controller (model) is still needed to ensure the

specified requirements are indeed the desired requirements.

Uncontrollable event

An event that operates autonomously, from the perspective of the controller. Such events are not
controlled by the controller, which can thus not prevent them from occurring. For instance,
events of a sensor could indicate that a button was pushed or released. And events of a
movement limit sensor could indicate that a movement has reached the end position, or that the
moving object is no longer at that position.

Uncontrolled system / plant

The uncontrolled system is the system 'as is', without any control. It is also called a plant in
control theory. For instance, at a low abstraction level, this could be the individual actuators and
sensors of a system. At a higher abstraction level, it could be a collection of controllers for
subsystems.

1.3. Synthesis-based engineering example

To demonstrate the value of synthesis-based engineering, let’s look at an example. The following
figure illustrates an example manufacturing system that processes products:

enter start

2 INOUT —— DISP / CHK
\

exit /
do2 OoP2 done?2 xv
finished

DONE -

Products enter at the INOUT place. From there production can start by moving them to the
dispatcher (DISP). The dispatcher dispatches a product (do1 or do2) to one of two operators (OP1 or
OP2) that perform the same operation. Once the operation is completed (donel or done2), the
product is moved to the checker (CHK). The checker determines whether the operation has
completed successfully or has failed. If it has failed, the system must redo the operation on that
product. This may be repeated until the operation is successful. The product must then leave the
processing loop, moving to DONE. It is then finished and moves back to INOUT. There it may exit the
system.

https://en.wikipedia.org/wiki/Plant_(control_theory)
https://en.wikipedia.org/wiki/Control_theory

The gray boxes indicate places where at most one product can be located at a time. The moving of
products through the system is visualized by the labeled arrows in the figure. Each arrow
corresponds to an actuator under the control of the controller. The controller can thus decide when
to move products from one place to another. A sensor indicates the result of the check performed
on processed products, indicating whether they are OK or not. This sensor works autonomously
and is thus not controlled by the controller.

1.3.1. FIFO requirement
The example system, without any controller that controls it, already ensures that:

* Products that enter can only start, preventing them from exiting without having been
processed.

* Products that failed processing must redo the operation.
* Successfully processed products must leave the operation area.

* Once a product passed finished it must exit, preventing it from being processed again.
For this example, we consider only a single requirement:

* Products must enter and exit the system in FIFO order.
That is, if one product enters earlier than another, it must also exit earlier.

Without additional control, the system does not satisfy this requirement, as it is possible for
multiple products to enter the system and subsequently be processed concurrently. Then, if a later
product finishes the operation earlier, or the earlier product requires rework, the later product
may be done sooner and thus exit the system earlier. The controller must restrict the behavior of
the system such that it satisfies the requirement. It can only do so by controlling the movement of
products through the system.

The FIFO requirement is specified in natural language as a short and simple sentence. It can
similarly be quite easily modeled, by tracking the order that products enter and exit the system.
Each product that enters the system is given a unique identifying number, one higher than the
previous product. As products exit the system, the identifier of the last product that exited the
system is stored (lastExitld). When a product is about to exit the system, it is in the INOUT place. If
the identifier of the current product on the INOUT place is given by curld, then the requirement can
be formulated as:

e curld = lastExitld + 1

See the section on synthesis-based engineering in practice example section for how the example
system and its requirement can be modeled in CIF.

1.3.2. Synthesis-based engineering

There are various ways to ensure the FIFO requirement holds. A silly solution is to never allow
products to enter the system. As there are then no products in the system, products also never leave
the system. Therefore, all (non-existent) products are in FIFO order. Another slightly more useful
option is to only allow a single product to be processed at a time. This would however severely limit

the productivity of the system. It is actually not that trivial to decide the exact conditions under
which the products may move, while still ensuring the FIFO requirement is satisfied.

We can however automatically compute the conditions that must hold for each movement by
applying supervisory controller synthesis. This computes for each movement the minimal
restriction that must be applied to enforce the requirement. Through synthesis, we obtain a
supervisory controller that restricts four movements:

1. Movement start is only allowed if one of the following two conditions holds:

o At the DISP place, OP1 place, OP2 place, and CHK place, there is in total at most one product.

o At the DISP place, OP1 place, and OP2 place, there is in total at most one product. There is
also a product at the CHK place and the check indicates the product was successfully
processed.

2. Movement donel is only allowed if the following two conditions both hold:
o Either there is no product at the DISP place, or it is a later product than at the OP1 place.
o Either there is no product at the OP2 place, or it is a later product than at the OP1 place.
3. Similarly, movement done2 is only allowed if the following two conditions both hold:
o Either there is no product at the DISP place, or it is a later product than at the OP2 place.
o Either there is no product at the OP1 place, or it is a later product than at the OP2 place.

4. Movement enter is only allowed if less than four products are in the system.
But why are these the 'optimal’ restrictions?
It is important to realize that:

A. If a product is checked and found to be successfully processed, it can only leave. It can not be
reprocessed (redo). If a product is moved to CHK too early, a product that should exit the system
before it can’t overtake it anymore. This could lead to a violation of the FIFO property if another
product that must exit earlier is for instance still being processed.

B. Only at most two products may be in the processing loop at any time. That is, at most at two of
the DISP, OP1, OP2 and CHK places there may be a product, at any time. This way, if a product
keeps failing to be processed successfully, it can be redone over and over again, while the other
product is at one of the operators. With three or more products in the processing loop, this is
not possible. An exception to 'at most two products in the processing loop' rule is when a
product has been checked and found to be successfully processed. Then, a third product may be
present, as the successfully processed product can then leave the processing loop and at most
two products will remain in the processing loop.

Then the supervisor restrictions are quite logical:

* The first restriction indicates when a product may start processing. Either one of its two
conditions must hold for the start movement to be allowed. This directly follows from
realization B. The first condition follows from the 'at most two products in the processing loop'
rule. At most one product may be in the processing loop for another to enter it. The second
condition describes the exception to this rule. There may be two products in the processing loop

if one of them is a successfully processed product about to leave the processing loop.

* The second and third restrictions indicate when a product may move to be checked. These two
restrictions follow directly from realization A. A product X may only be moved to be checked, if
there is no product that must exit earlier. Obviously, moving a product to the checker is
physically only possible if there is a product at an operator, as otherwise there is no product to
move. Also, it is only physically possible to move a product to the checker there is not already a
product at the checker, as each place can only hold one product. This leaves only the dispatcher
and other operator as places to be checked. If there would be an earlier product at the
dispatcher or other operator, such a product would not be able to overtake the product about to
be moved to the checker, leading to a violation of the FIFO property. Hence, both restrictions
have to conditions, on for the dispatcher and one for the other operator. Either there must be no
product at those places, or it is later product.

* The fourth restriction indicates when a product may enter the system. It only allows a product
to enter if there are less than four products in the system. This means that the restriction
ensures that at most four products are in the system at any time. Through realization B we
know at most three products may be in the processing loop. Then only at most one of the INOUT
and DONE places may contain a product, for a total of four products in the system. To
understand why this is the case, consider the following:

> A product could be at the INOUT place. But then no product must be at the DONE place. If
there were a product at the DONE place, there would be products at the INOUT, DONE and
CHK places. The product at the CHK place could then not move to the DONE place, as that
already has a product. Similarly, the product at the DONE place could then also not move to
the already occupied INOUT place. And the product at the INOUT place could then not move
to the DISP place, as the processing loop is already maximally filled. This would mean no
product could move anywhere. This kind of deadlock is prevented by the fourth condition.

> A product could be at the DONE place. But then, by similar reasoning, no product must be at
the INOUT place.

All of this is certainly a lot to consider! Would you have been able to figure all of this out by
yourself? And how long would that have taken you? Considering this is only a simple example
system with only one non-trivial requirement, it is clear that having some computer assistance
when engineering a more realistic controller can be very useful.

1.3.3. Example benefits of synthesis-based engineering

Finally, let us consider some of the benefits of synthesis-based engineering as it relates to this
example:

* Synthesis automatically computes the optimal control conditions. It should now be clear that
this can save a lot of effort.

* Manually engineering the controller can be quite tricky. It could easily lead to mistakes if
certain scenarios are not properly accounted for. For instance, a restriction could be missed, or
one of them could be incorrect. Synthesis can thus also reduce human error.

* Through synthesis you only have to specify the requirement and synthesis automatically
generates a correct-by-construction controller, from which you can automatically generate the
implementation. For the simple to specify but difficult to implement example requirement, this

allows you to focus on what the controller should do (the requirement), rather than how the
controller should do this (the complex control conditions and their implementation).

* As an alternative to synthesis, we could apply formal verification on the system model to check
whether the FIFO requirement holds. However, as the requirement does not hold on the system
without a controller, we would get only a counter example representing a scenario indicating
where the requirement does not hold. Likely, it would take several iterations and quite some
thinking to manually arrive at the exact correct control conditions. Compared to formal
verification, synthesis produces all the correct control conditions, automatically and in a
single iteration.

* An engineer that develops the controller manually, may well impose severe restrictions to avoid
much of the complexity of satisfying the FIFO requirement. The control conditions produced by
synthesis however, are minimally restrictive. Products may enter the system, start processing,
be processed in parallel, and leave the processing loop, whenever possible. This ensures the
maximum throughput of the system can still be achieved.

* Synthesis-based engineering allows for a modular design. The various parts of the system, as
well as the requirement, can be modeled separately. This makes it easy to adapt the system
(model), to for instance allow products that do not require processing to bypass the processing
loop. With minimal changes to the system model, and no changes to the requirement, a new
supervisor can then be produced by the push of a button. This allows for incremental
development of the system and its controller.

And again, consider that this is only a simple example system, with only a single requirement.
Synthesis-based engineering has even more value when multiple, complex and related
requirements need to be considered, or when controllers for many similar yet different systems
need to be developed. See the section on benefits of synthesis-based engineering for further
benefits of the approach.

Even though synthesis-based engineering has many benefits, companies should not underestimate
how significantly different it is from traditional engineering. They should consider and manage the
challenges particular to this engineering approach.

1.4. Synthesis-based engineering in practice

This section explains concretely how to use the CIF language and toolset to apply synthesis-based
engineering of supervisory controllers. Before reading this section, please familiarize yourself with:

» The basics of the CIF language.

* The synthesis-based engineering approach.
Development process

The process to develop supervisory controllers using the synthesis-based engineering approach
typically following several steps. We’ll briefly discuss each of the steps and provide some practical
guidance:

Modeling the events

Modeling the actions that can happen in the system as events.

Modeling the plant

Modeling the plant automata that represents the event behavior of the to-be-controlled system.

Modeling plant relations

Modeling the relations between the various plant automata.

Modeling the requirements

Modeling the requirements that restrict the behavior of the plant.

Marking

Dealing with marking of the plant and requirement automata.

Supervisor synthesis

Performing supervisor synthesis on the plant and requirements to automatically synthesize a
supervisor.

Validation

Validating that the synthesized supervisor controls the system as desired.

Controller implementation

Implementing the validated supervisory controller using automatic code generation.
Advanced topics
Furthermore, the following more advanced information is available:

Incremental controller development

Explains how to incrementally develop your controller to prevent commonly encountered issues
when applying synthesis-based engineering.

Resolving issues with too limited behavior

Explains how to resolve issues with too limited controlled system behavior, for instance due to
conflicting requirements, revealed through synthesis or validation.

Supervisor synthesis performance

Explains how to resolve performance and memory issues for supervisor synthesis.

Non-monolithic supervisor synthesis

Explains how to incrementally develop your controller to prevent commonly encountered issues
when applying synthesis-based engineering.

Practical example
For how this process can be used in practice, based on an example, see:

» Synthesis-based engineering example

» Synthesis-based engineering in practice example

1.4.1. Development process

Modeling the events

The first step to apply synthesis-based engineering in practice is to identify the actions that can
happen in the system, and model them as controllable and uncontrollable events.

Controllable events are under the control of the controller. They are outputs of the controller and
inputs for the system being controlled. The controller determines when these events occur. Typical
examples include turning an actuator on or off, or enabling or disabling a sub-system.

Uncontrollable events are outside of the control of the controller. They are inputs for the controller
and outputs of the system being controlled. The controller can not prevent such events from
occurring in the system. Typical examples include a sensor going on or off, such as for a button
push sensor or a movement limit sensor.

The events can be modeled in CIF as follows:

uncontrollable u_button_pushed, u_button_released;
controllable c¢_turn_motor_on, c_turn_motor off;

Controllable events are by convention given names starting with c_, while uncontrollable events
start with u_.

For channels, a special kind of events, see the CIF language tutorial:

¢ Channels
¢ Dataless channels

* Combining channel communication with event synchronization

The next step in the process is to model the plant.

Modeling the plant

After modeling the events, the plant needs to be modeled. It represents the uncontrolled system, the
system 'as is' without the controller.

Typically, for low-level controllers, start with a plant automaton per sensor and actuator. For the
common case of digital sensors and actuators, model the automata with two locations, one where
the sensor or actuator is off, and one where it is on. Which location should be the initial location
depends on the specific sensor or actuator. Digital sensors can go on and off, and as such have two
associated uncontrollable events. Similarly, digital actuators can be turned on or off, and have two
associated controllable events.

Here are some examples of typical plant automata for low-level sensors and actuators:

plant Button:
uncontrollable u_pushed, u_released;

location Released:
initial; marked;
edge u_pushed goto Pushed;

location Pushed:
edge u_released goto Released;
end

plant Lamp:
controllable c¢_on, c_off;

location Off:
initial; marked;
edge c_on goto On;

location On:
edge c_off goto Off;
end

The events that belong to a specific sensor or actuator are typically placed within the
corresponding automaton. Other events are often placed outside the automata.

See a later step for how to deal with marking. The CIF language tutorial has lessons on using
variables, guards and updates.

The next step in the process to apply synthesis-based engineering in practice is to model plant
relations.

Modeling plant relations

After modeling the plant, for instance the individual sensors and actuators, the relations between
the plant automata are to be considered. These relations should be physical relations, representing
behavioral restrictions present in the actual uncontrolled system.

For instance, consider a movement with two limit sensors:

plant UpSensor:
uncontrollable u_on, u_off;

location Off:
initial; marked;
edge u_on goto On;

location On:
edge u_off goto Off;
end

plant DownSensor:
uncontrollable u_on, u_off;

location Off:
initial; marked;
edge u_on goto On;

location On:
edge u_off goto Off;
end

Most likely the two sensors physically can’t both be on at the same time. The individual plant
automata of the two digital sensors however, can both be in their On states, as they are not yet in
any way related. The easiest way to specify such a relation is to use a state plant invariant:

plant invariant not (UpSensor.On and DownSensor.0On);

Alternatively, you may combine multiple plants into a single plant. To merge some plants, manually
compute/model the product of the plants, and remove the original plant automata. Then, to express
the relationship, remove the behavior that is not physically possible. However, typically using a
plant invariant is easier.

An alternative physical relationship, is the relation between sensors and actuators. In such cases,
the relationship with the sensor(s) can usually be added directly to the actuator plant(s).

By correctly incorporating all the physical restrictions present in the actual system, the tools can
use this knowledge during synthesis. Essentially, by modeling the physical relations/restrictions, the
uncontrollable events are enabled in much less (combinations of) locations of the plant automata.
This means that the requirements are much less likely to block uncontrollable events.

In other words, the modeled relationships of the plants restrict the behavior of the plant automata.
However, these restrictions are also present in the physical system. Hence, without modeling such
relationships, the plant model has more behavior than the physical system. Once the plant relations
are correctly modeled, you may assume this relationship in the requirements, meaning you may
assume that certain uncontrollable events can physically not occur in certain locations. The tools
will then have enough knowledge of the system to come to the same conclusions.

For instance, assume a certain sensor signal can only occur when the corresponding actuator is
enabled. A movement limit sensor may for instance only be able to go on once a movement
completes, which in turn can only happen by enabling the corresponding movement actuator.
Modeling this relation ensures that 'blocking' such sensor signals in the requirements, when the
actuator is off, is no longer considered 'illegal’' behavior.

The next step in the process to apply synthesis-based engineering in practice is to model the
requirements.

Modeling the requirements

After modeling the plant and plant relations, the requirements should be modeled as well.

The hardest thing about modeling the requirements, is that you have to think in restrictions, rather
than in use cases. So, rather than 'first do this, then do that, then do that or that other thing, etc/,
you should think 'this or that is only allowed if/after this or that other thing'. Requirements should
be as small and orthogonal as possible.

Event-based requirements are modeled as requirement automata. The simplest event-based
requirements have only two locations, and form a loop of only two edges. Here is a typical example
requirement that controls the plants from the section on modeling the plant. It ensures that the
lamp is on while the button is pushed, and off while it is released:

requirement LampOnWhileButtonPushed:
location Released:
initial; marked;
edge Button.u_pushed goto Pushed;
edge Lamp.c_off;

location Pushed:
edge Button.u_released goto Released;
edge Lamp.c_on;
end

We can also model the requirements in a more state-based manner (referring to locations of
automata) or data-based manner (referring to locations of automata, as well as using variables,
guards, updates, and invariants), which is often shorter and simpler. The requirement above can be
modeled in a state-based manner using state/event exclusion requirements as follows:

// Lamp on only while button is pushed.
requirement Lamp.c_off needs Button.Released;
requirement Lamp.c_on needs Button.Pushed;

Having requirements block uncontrollable events can easily lead to unnecessarily restricting too
much of the system behavior. As mentioned in the section on modeling plant relations, correctly
modeling such relations makes this easier.

Generally, it is better to as much as possible use requirements that are pure restrictions. That is, use
state-based requirements (mutual state exclusion and state/event exclusion requirements) instead
of event-based requirements (requirement automata), where applicable. Requirement automata
may introduce additional state, which can lead to reduced performance. Using pure restriction
requirements you are also less likely to unnecessarily restrict too much of the system behavior.

The CIF language tutorial has lessons on using variables, guards and updates.

The next step in the process to apply synthesis-based engineering in practice is to deal with
marking.

Marking

After modeling the plants and requirements, marking should be considered. Every automaton,
whether plant or requirement, must have at least one marked location. A marked location is a
location that indicates a safe, stable, or resting state. Synthesis will guarantee that a marked
location can always be reached, thus ensuring a form of liveness.

Physical systems typically keep operating, repeating their behavior. Therefore, in practice, the
entire system can often be brought back to the initial state. As such, it is then typically enough to
make the initial locations marked.

An exception is automata that have some kind of initialization behavior/sequence. For such
automata, make the first location that is part of the loop after the initialization sequence, a marked
location. The locations from the initialization sequence can no longer be reached after initialization
is finished. The first location after that initialization sequence is part of the normal' behavior and
can be seen as the initial location of the behavior after initialization.

Note that marking every location reduces the value of supervisor synthesis, as it essentially disables
its non-blockingness guarantee. This may hide issues related to deadlocks and livelocks.

For advanced uses of marking, see the CIF language tutorial section on marker predicates.

The next step in the process to apply synthesis-based engineering in practice is to synthesize a
supervisor.

Supervisor synthesis

Having modeled the plants and requirements, the supervisory controller can automatically be
synthesized. Supervisory controller synthesis (or simply supervisor synthesis) automatically
generates a supervisor, from the models of the uncontrolled system (plant model) and control
requirements (requirements model).

The synthesized supervisor is correct-by-construction, satisfying various properties. It is safe
(satisfies all the requirements), controllable (limits only controllable events, not uncontrollable
ones), is non-blocking (does not block, a form of liveness), and is maximally permissive (imposes no
more restrictions than is necessary).

https://en.wikipedia.org/wiki/Liveness

CIF supports supervisor synthesis through the following tools:

» Data-based supervisory controller synthesis tool

* Event-based supervisory controller synthesis tool

The data-based synthesis tool is generally more efficient and supports a larger subset of CIF
language concepts. It is therefore recommended over the event-based synthesis tool.

The documentation of these tools provide further details on how to use them.

The next step in the process to apply synthesis-based engineering in practice is to perform
validation.

Validation

After applying supervisor synthesis it is time to analyze the resulting supervisor model. Verification
to ensure that the synthesized supervisor satisfies its specified requirements is superfluous, as the
synthesized model is correct-by-construction.

The supervisor should however still be validated to ensure it behaves as intended. The specified
requirements could not be the desired requirements, as they could for instance be wrongly
specified or too strict, resulting in the system being controlled by the controller exhibiting
unwanted or insufficient behavior.

The CIF simulator can be used to simulate CIF specifications. Especially when combining this with
SVG visualization and interactive simulation, it is a very powerful way to validate whether the
supervisory controller controls the system as intended. This may for instance reveal that additional
requirements are needed, or existing requirements need to be adapted.

In case any issues are revealed through validation, for instance by means of simulation, these need
to be addressed. Typically this involves changes to either the plant model or requirements model.
After such changes, the supervisor can be re-synthesized automatically. Changes can be made
iteratively, until confidence in the correctness of the controller is high enough.

The next step in the process to apply synthesis-based engineering in practice is to implement the
supervisory controller.

Controller implementation

Once a supervisory controller has been synthesized and validated, it is time to implement it. The
control software is typically implemented using a programming language, such as PLC code for a
PLC platform, or Java or C++ code for an industrial PC. This may for instance be done in-house
within the company, by different teams or departments, or by an external supplier.

While manual implementation is possible, the code is often automatically generated from the
controller model. This automatically produces correct-by-construction code by generating the code
from the correct-by-construction controller model. Automation prevents the kinds of subtle

mistakes that humans make when they manually implement something, ensuring consistency
between the controller model and implementation. Automation also improves efficiency. If the
controller model is changed, with the push of a button a new correct-by-construction
implementation can again quickly be generated.

CIF supports code generation through the following tools:

* CIF PLC code generator: for PLC programming languages

* CIF code generator: for various other programming languages
The documentation of these tools provide further details on how to use them.

With a working implementation of the controller, this concludes the process to apply synthesis-
based engineering in practice.

1.4.2. Advanced topics

Incremental controller development

When developing a controller, it is often best to start with just a small part of the system.

You first develop a controller for that small part, validate it, and make sure it works properly. Then,
you extend the controller to work for a larger part of the system, and you keep repeating this until
the controller controls the entire system. That is, you go through the entire development process
(including among others specification, synthesis, simulation, implementation) each time. And then
you increase the part of the system covered by the plants and requirements for each iteration.
Typically, for low-level controllers you should start with no more than a few sensors and actuators,
with their corresponding events.

This incremental development approach makes it easier to for instance figure out why your
controller doesn’t behave as expected, which of your requirements are conflicting, or for what
other reason a supervisor can’t be synthesized.

Resolving issues with too limited behavior

Supervisor synthesis always produces correct-by-construction supervisors, based on the plant and
requirements models that you provide as input. However, if you for instance provide too restrictive
or conflicting requirements, or forget to model the plant relations, you may not get the desired
controlled system behavior. Such issues are often found during validation.

Another way this may manifest itself, is by supervisor synthesis producing an 'empty supervisor'
error. This means that synthesis has determined that no supervisor can ever safely satisfy the
requirements that you specified.

However, the resulting supervisor supervisor doesn’t have to be 'empty'. Synthesis could also have
restricted so much of the behavior that little behavior remains, in order to satisfy the (conflicting)
requirements you provided. The resulting supervisor could for instance have only a few states, but
it may also have thousands or millions of states, while still missing important system behavior.

In such cases, where the resulting supervisor is not what you expect or desire, you need to go back
to your plants and requirements. Here are some hints to resolve this kind of problems:

» Try to use an incremental development approach. This ensures that if you encounter problems
with missing behavior, you can be reasonably sure the problem is in the part you added since
the last working version. If on the other hand you put the entire system in your model at once,
and you get for instance an 'empty supervisor' error, it is much more difficult to track down the
cause.

* Try to as much as possible use requirements that are pure restrictions.

* Make sure you have at least one marked location per automaton (plant as well as requirement
automata). Usually, marking the initial location is sufficient. See also the section on dealing with
marking.

* Make sure your initial and marked locations are consistent between all automata. For instance,
if in a plant you can initially only push a button, and then release it, but if in a requirement
automaton you must first release it before it can be pushed, you are likely to get an empty
Supervisor.

* Make sure your requirements don’t restrict the system too much. Be especially careful with
blocking uncontrollable events in requirement automata.

For every uncontrollable event in the alphabet of a requirement automaton, make sure that the
requirement does not block the uncontrollable event. You can look at the plants, to see when the
uncontrollable event is possible. Then you may ask yourself, for each location of the
requirement, in which locations of the plant you can be at the same time. For such plant
locations, you should check whether the uncontrollable event is possible. It should then also be
possible in the requirement. There are two ways to solve the blocking of an uncontrollable
event by a requirement:

o The first solution is to correctly model the relations between the plants. For further details,
see the section on modeling plant relations.

> The second solution is to add self loops in the requirement to allow the uncontrollable event
that was previously disabled by the requirement.

The first solution is recommended, but it does not always apply. If it is not possible to use the
first solution, or if you already applied the first solution and still have the problem, you could
use the second solution. However, never blindly add self loops. Always verify that this gives you
the desired behavior!

* Try to synthesize a supervisor with a subset of the requirements, to find out which requirement
(or combination of requirements!) is causing the lack of behavior.

Supervisor synthesis performance

There are several ways to altogether avoid performance and out-of-memory issues when applying
supervisor synthesis:

» Use the data-based synthesis tool rather than the event-based synthesis tool, as the former has
much better performance.

* Rather than synthesizing a single monolithic supervisor, employ non-monolithic synthesis to
make use of the inherent structure of your system.

However, if you still suffer such issues, consider the following to resolve them:

* See the page of the Eclipse ESCET general toolkit documentation on resolving performance and
memory problems. In particular, make sure to give Java more memory. This should be the first
thing you check.

 If possible, use requirements that are pure restrictions, as they only make the supervisor
smaller. If you introduce memory (e.g. counters), or other forms of sequencing (e.g. to specify
the order of controllable events), that usually increases the size of the supervisor. If possible,
use requirements with only one location, or even better, use requirement invariants. For more
information, see the State (exclusion) invariants, State/event exclusion invariants and Invariant
kinds sections of the CIF language tutorial.

» Try to separate your requirements as much as possible, to keep them simple. Also, leave out any
events from a requirement automaton that are not relevant to that specific requirement.

* You can try to restrict more of the system, by adding more requirements, to get a smaller
supervisor (with less behavior).

* Avoid adding plants that you don’t at all use in the requirements. For instance, don’t add a
button plant automaton if you don’t use the button.

* Try to avoid duplicate requirements that enforce the same behavior in different ways.

* Check out the performance section of the data-based synthesis tool documentation.

Non-monolithic supervisor synthesis

A known concern for supervisory controller synthesis is its scalability. While a supervisor may be
synthesized for smaller systems in seconds, for larger and more complex systems this may take
considerably more time. Employing the proper techniques for the given situation is essential to
mitigate this concern.

Often, rather than synthesizing a single monolithic supervisor, multiple supervisors should be
synthesized for different parts of the system, making use of the inherent structure of the system
itself. Combining this with abstraction, higher-level supervisors can still be synthesized on top of
lower-level supervisors, scaling to very large systems.

https://eclipse.dev/escet/v3.0-RC1/performance/index.html
https://eclipse.dev/escet/v3.0-RC1/performance/index.html

Still, multiple syntheses will need to be performed. If you encounter scalability issues for some of
them, divide the system further, or resolve the performance problems in another way.

1.4.3. Synthesis-based engineering in practice example

CIF supports the entire development process for synthesis-based engineering of supervisory
controllers. The steps involved are described in the section on synthesis-based engineering in
practice. However, here we focus on specification, supervisory controller synthesis, simulation and
code generation.

We consider how a controller can be developed for the synthesis-based engineering example. This
example is one of the many CIF examples. See the CIF examples section for how to import them into
your Eclipse ESCET IDE, to experiment with them yourself. After importing the examples project
into your IDE, you can find this example in the project’s synthesis/fifo folder.

Plant specification

First, we’ll specify the plants (file fifo.plants.cif). Consider again the following figure that
visualizes the example system:

enter start

—
< INOUT —» DISP CHK

exit \ /
do2 OoP2 done2 xv
finished

Events

Each of the arrows indicates a movement of products. We can model each arrow as a controllable
event that the supervisor can control. The checker (CHK) may indicate that a product was processed
successfully or that it failed, which we can model as uncontrollable events. This leads to the
following event declarations:

controllable c_enter;
controllable ProductId c_start;
controllable ProductId c_dol;
controllable ProductId c_do2;
controllable ProductId c_donel;
controllable ProductId c_done?2;
uncontrollable u_success;
uncontrollable u_failure;
controllable ProductId c_redo;
controllable Productld c_leave;
controllable ProductId c_finished;
controllable c_exit;

Product identifiers

To be able to express the example’s FIFO requirement, we must keep track of product identifiers
(ids). A product may enter the system, after which it gets its id. As products move through the
system, their id is passed along. Hence, most of the events are channels that communicate a
ProductId. This is a custom type, defined as follows:

const int MAX_NR_OF PRODS = 5;
type ProductId = int[@ .. MAX_NR_OF_PRODS - 1];

CIF can only perform synthesis on specifications where types have a finite domain. We therefore
define a maximum number of products (MAX_NR_OF_PRODS) that may be in the system. Product ids are
then integer numbers in the range [0 .. MAX_NR_OF_PRODS - 1], with both bounds being inclusive.
This allows each product in the system to have a unique id.

The INOUT place

Each of the system’s places that can holds a product is modeled as a plant automaton.

First we model the INOUT place:

plant INOUT:
disc ProductId nextId = 0;
disc ProductId curld = 0;
disc ProductId lastExitId = MAX_NR_OF_PRODS - 1;
disc int[@..MAX NR_OF PRODS] cnt = 0;

location Idle:
initial;
marked;
edge c_enter when cnt < MAX_NR_OF_PRODS do curld := nextId, nextId := (nextId + 1)
mod MAX_NR_OF_PRODS, cnt := cnt + 1 goto NewProduct;
edge c_finished? do curld := 7 goto FinishedProduct;

location NewProduct:
edge c_start!curld do curld := @ goto Idle;

location FinishedProduct:
edge c_exit do lastExitId := curld, curld := @, cnt := cnt - 1 goto Idle;
end

The automaton has several variables:

* Variable nextId keeps track of the product id to use for the next product that enters the system.
The first product to enter the system gets id 0.

» Variable curld represents the product id of the product that is currently located at the INOUT
place. However, its value is irrelevant when there is no product at the INOUT place.

* Variable lastExitId keeps track of the last product that exited the system. Given that products
must enter and exit in FIFO order, and that the first product to enter gets id 0, lastExitId is
initialized to the largest possible product id.

* Variable cnt counts the number of products currently in the system. As initially there are no
products in the system, it is initialized to 0. The count is used to ensure MAX_NR_OF_PRODS can be
honored.

The automaton also has several locations. Initially the INOUT place is Idle, as it has no product.

A product may only enter (by event c_enter) if the maximum number of products is not yet
exceeded (cnt < MAX_NR_OF_PRODS). The product then gets assigned the next product id (curld :=
nextId), it being a newly entered product currently located at the INOUT place. As the next product
id has then been used, it will be incremented by one to ensure the next product again gets a unique
product id (nextId := (nextId + 1)). Given that the ProductId type only allows a finite number of
ids, we loop around to avoid overflow (mod MAX_NR_OF_PRODS). We also update the number of
products in the system (cnt := cnt + 1). The automaton then proceeds to its NewProduct location
(goto NewProduct).

In the NewProduct location, processing of a product may start (event c_start) by sending it (c_start!)
to the dispatcher (DISP). The product id is sent along (!curId) with this movement. After moving the
product to the dispatcher, the INOUT place no longer holds a product (goto Idle). The product id is

reset to zero (curId := 0). This is optional, but keeps the state space smaller, leading to more
efficient synthesis.

While Idle the INOUT place may receive a finished product (c_finished?) from the DONE place. The
product id of the currently present product is then updated to that of the received product (curId :=
7). The automaton then proceeds to the FinishedProduct location.

There the product may exit (event c_exit) the system. It then becomes the last product to have
exited the system (lastExitId := curld). There is then no longer a product at the INOUT place.
Again the product id is reset to zero (curld := 0) to keep the state space smaller for efficient
synthesis. As a product has left the system, the counter is also updated (cnt := cnt - 1).

The Idle location is also a marked location. This specifies that the INOUT place must always be able
to become idle again. Through similar markings in the other places also the system as a whole must
always be able to become idle again.

The other places

For brevity, we’ll not explain the remaining places in as much detail as the INOUT place. We’ll
discuss each automaton for each place briefly:

» The dispatcher (DISP) receives products (c_start?) from the INOUT place. It forwards them to
either the first (OP1) or second (OP2) operator, with c¢_do1!curId or c_do2!curld, respectively.

» The operators (OP1 and OP2) simply receive a product from the dispatcher (DISP) and forward
it to the checker (CHK), after some processing.

* The checker (CHK) receives a product from one of the operators (c_done1?, c_done2?). It then
determines whether the product was successfully processed (u_success) or processing has failed
(u_failed). It forwards successfully processed products to the DONE place by c_leave, while
failed products are sent back to the dispatcher (DISP) by c_redo.

» The DONE place simplify forwards products from the checker (CHK) to the INOUT place.

The FIFO requirement

With the plants specified, we specify the requirement (file fifo.plants_and_requirements.cif). We
specify it in a separate file, to allow using the plant model for both synthesis and simulation, as
described later in this section.

First, we import into this file the entire plant specification:

import "fifo.plants.cif";

The requirement was given in natural language as:
* Products must enter and exit the system in FIFO order.

We can easily model it as follows, using a requirement invariant:

requirement FIFO: INOUT.FinishedProduct => INOUT.curId = ((INOUT.lastExitId + 1) mod
MAX_NR_OF _PRODS);

If the INOUT place has a finished product (is in its FinishedProduct location), then a product is about
to exit the system. We know the product id of the last product that exited (INOUT.lastExitId) and the
product id of the product currently situated at the INOUT place (INOUT.curId). Products that enter
the system get an id that is one higher than the previous product that entered (modulo the
maximum number of products). The FIFO property can thus be ensured by requiring that when a
product exits, it also has an id one higher than the last product that exited (again modulo the
maximum number of products). From this, requirement FIFO follows directly.

Performing synthesis

We can automatically compute a supervisory controller by applying supervisory controller
synthesis. For this, we’ll use the CIF data-based synthesis tool.

To be able to perform synthesis with the push of a button, a script is provided (file
do1_synthesize.tooldef):

from "lib:cif" import *;

mkdir("generated", force=true);

cifdatasynth("fifo.plants_and_requirements.cif --forward-reach=true -mdebug -o
generated/fifo.synthesized.cif");

It first imports the CIF tools. Then it ensures that directory named generated exists. It is thus created
if it does not yet exist. Lastly, it invokes the CIF data-based synthesis tool on the file that contains
the plants and requirements. It configures some options. Forward reachability is enabled for
simpler resulting control conditions. It also enables debug output to be printed to the console,
allowing to see what synthesis has done. Finally, it specifies that the synthesis result is to be saved
to the fifo.synthesized.cif file in the generated directory.

To execute the script, right click it an choose Execute ToolDef or select the file and press F10.

Simulation model

To validate the system controlled by the synthesized supervisor, it can be useful to simulate it. We
therefore specify a simulation model (file fifo.simulation.cif).

This model first imports the synthesized supervisor:

import "generated/fifo.synthesized.cif";

It then specifies an SVG image to be used for visualization of the system:

svgfile "fifo.svg";

The bulk of the specification consists of CIF/SVG output mappings that map the state of the plant
model to properties of elements of the SVG image. Some of them ensure that text labels have the
correct text, others ensure that boxes have the correct fill color, etc. Here are some examples:

svgout id "max-nr-of-prods" text value <string>MAX_NR_OF_PRODS;
svgout id "inout-cur-txt" text value if INOUT.Idle: "-" else
<string>INOUT.curId end;

svgout id "inout" attr "fill" value if INOUT.Idle: COLOR_IDLE else
COLOR_BUSY end;

svgout id "chk-rslt" attr "visibility" value if CHK.Idle: "hidden" else
"visible" end;

svgout id "chk-rslt" attr "fill" value switch CHK:

case Idle: COLOR_IDLE

case Busy: COLOR_BUSY

case Success: COLOR_SUCCESS

case Failure: COLOR_FAILURE
end;

By using CIF/SVG input mappings, certain elements of the SVG image can be clicked to trigger
events in the model. Here are some examples:

svgin id "enter" event c_enter;
svgin id "start" event c_start;
svgin id "finished" event c_finished;
svgin id "exit" event c_exit;

The following figure shows a potential visualization of the state of the system during a simulation:

Max nr. of products: 5
Last entered product id: 1 redo
Last exited product id: n/a

enter start

y OP1

_} _

« INouT ———3% DISP

ext 5 Pl
402 OP2 y

finished

DONE =&

A place is gray if there is no product. The smaller box next to it is then also gray and indicates -, for

no product. An occupied place is blue, with its smaller indicating the product id of the product that
is present.

For the checker (CHK) a second small box is present. It is hidden if there is no product at the
checker. If a product is present for which a check has not yet been done, then the box is blue and
has a question mark. If the check has completed and the product was processed successfully, then
the box is green and has a tick mark. If processing the product failed, then the box is red with a
cross mark.

At the top left some additional information is provided. It indicates the maximum number of
products that may be in the system, as configured via MAX_NR_OF_PRODS. It further indicates the
product id of the last product that entered the system, or n/a if no product has entered the system
yet. Finally, it indicates the product id of the last product that existed, as indicated by
INOUT.1lastExitId, or n/a if no product has exited thus far.

It can not be determined from the plant whether any products have entered or exited thus far, nor
what is the product id of the last product that entered. To ensure this information is available to be
used in the CIF/SVG output mappings, a monitor automaton is added to the simulation model that
keep tracks of this information:

automaton monitors:
disc bool anyInput = false;
disc bool anyQutput = false;
disc ProductId lastEnterId = 0;

location:
initial;
edge c_enter do anyInput :
edge c_exit do anyOutput :
end

true, lastEnterId := INOUT.nextId;
true;

As products enter (event c_enter) or exit (event c_exit) the variables are updated as needed. The
variables are used in the CIF/SVG output mappings.

The labeled arrows in the figure can be clicked to trigger their corresponding events. For example,
clicking the arrow labeled with enter triggers event c_enter. When an arrow is clicked and the
corresponding event is not enabled, a warning will be printed to the console.

Simulating the supervised system

Similar to having a script to perform synthesis, a script is present to perform simulation (file
do2_simulate.tooldef):

from "lib:cif" import *;

cifsim("fifo.simulation.cif -i svg --frame-rate=30");

This script also imports the CIF tools. It then starts the CIF simulator. It configures some of the

simulator’s options, among others to indicate the simulation model to simulate.

Start the script as before. Simulation will start and show the visualization.

Manually modeled supervisor

The example project also contains two other scripts. They can be used to check whether a manually
modeled supervisor (file fifo.manually_modeled_supervisor.cif) has the same behavior as the
synthesized supervisor. The first script (file do3_chk_cif.tooldef) performs this check using various
CIF tools only. The second script (file do3_chk_mcr12.tooldef) performs the same check using mCRL2.

Normally, one would not manually model the supervisor, and thus also not perform such checks.
However, for this example we include them, as they may prove illustrative.

Code generation

Finally, from the synthesized supervisor an implementation of the controller may be automatically
generated. CIF has tools to generate code for several programming languages.

1.5. Challenges in applying synthesis-based
engineering

A synthesis-based engineering approach has many advantages over a more traditional engineering
approach. However, there can be challenges when embedding such a new approach into industrial
practice. It is essential to be aware of them, and manage them explicitly.

Most of the challenges that apply to a synthesis-based engineering approach also apply to other
model-based engineering approaches, including verification-based engineering.

The following challenges are discussed:

* Change in way-of-working

* Tool support

1.5.1. Change in way-of-working

The use of model-based engineering, the modeling of behavioral specifications and control
requirements, and the use of formal techniques such as supervisory controller synthesis, requires a
certain mindset, knowledge and skills. It is important that personnel with the appropriate
knowledge and expertise is present in a company. Having a team of properly trained and
experienced experts that can assist with and steer the introduction of new techniques is essential. If
a company does not have such experts, they could hire them. However, training and retraining for
(part of) the existing personnel is often also required.

Furthermore, model-based engineering partly also requires a different way of working compared
to traditional engineering approaches. It is important to understand the effects on the company’s
development process, as well as its culture. The various pros and cons must be evaluated, and any
impediments must be identified and addressed.

A transition like this will not happen in a day. Sharing experiences with other parties that have
gone through a similar transition and/or are going through one can be of great benefit. Another
way to reduce the risks is contracting an external party to help guide the process.

Furthermore, risks can be reduced by step by step introducing the changes to the development
process, introducing more and more elements of model-based, verification-based and synthesis-
based engineering. This way models become more and more leading, throughout the development
process. For instance, you could follow these steps:

1. Start modeling (the requirements): Increase the quality of requirements by specifying them
formally in a model-based way, during early development phases. This can already be
combined with for instance simulation, to produce unambiguous specifications, leading to less
mistakes and reduced rework. In this first step, the resulting requirements can still be put in a
document and implemented manually.

2. Models as single source of truth: Formally but manually specify the controller model in a
model-based way, based on the formal requirements. From the model, automatically generate
the controller code. This is a step towards making the model the single source of truth.

3. Embrace formal methods: In this step, employ more formal methods to go beyond simulation
and testing. Use formal methods that have more guarantees on completeness. For instance, use
formal verification to guarantee that all specified requirements are satisfied in every
conceivable situation. At the end of this step, you could fully adopt model-based and
verification-based engineering.

4. Adopt synthesis-based engineering: Use supervisory controller synthesis, and fully adopt
synthesis-based engineering.

1.5.2. Tool support

Synthesis-based engineering requires tool support to model plants and requirements, to synthesize
supervisors, perform simulation, generate code, etc. Given that automation and computer-aided
design are core principles, this is simply not feasible without appropriate tool support. Companies
should consider various aspects regarding the tools they use, such as the following:

Tools ideally support as much of the development process of supervisory controllers as possible.

Consider how to integrate the synthesized supervisors into the system.

* Consider how active the community around the tool is.

* Consider whether commercial support is available.
The selected tools should also be used in the right way. For instance, naively applying synthesis and
trying to obtain a single monolithic supervisor for larger and more complex systems will likely not

scale very well. Employing the proper techniques for the given situation is essential to mitigate
such concerns.

2. Language tutorial

This tutorial introduces the CIF language. It explains the general idea behind the concepts of the
language, and shows how to use them, all by means of examples. The tutorial is focused on giving a
short introduction to CIF, and does not cover all details. It is recommended reading for all CIF users.

2.1. Introduction

CIF is primarily used to create models of physical systems and their controllers, describing their
behavior. However, CIF is a general-purpose modeling language, and can be used to model
practically anything, ranging from physical real-world systems to abstract mathematical entities.

CIF supports discrete event models, that are mostly concerned with what happens, and in which
order. CIF also supports timed systems, where timing plays an explicit role, and hybrid systems,
which combine the discrete events with timing. This makes CIF suitable for modeling of all kinds of
systems.

The CIF tooling puts a particular focus on supporting the entire development process of controllers.
However, just as the CIF language, the CIF tooling can be applied much more generally. The tooling
allows among others specification, supervisory controller synthesis, simulation-based validation
and visualization, verification, real-time testing, and code generation.

CIF originally stood for Compositional Interchange Format for hybrid systems. As the language has
since evolved beyond its original purpose, the name 'CIF' is nowadays only used in its abbreviated
form.

2.2. Lessons

Several lessons are available, grouped into the following categories:

* Basics

* Data

» Types and values

» Scalable solutions and reuse (1/2)
* Time

* Channel communication

* Functions

» Scalable solutions and reuse (2/2)
 Stochastics

» Language extensions

The lessons introduce new concepts, one by one, and are meant to be read in the given order.

Basics

Automata

Explains automata, locations, events, edges, transitions, and more.

Synchronizing events

Explains event synchronization, enabledness, traces, and state spaces.

Non-determinism

Explains multiple causes of non-determinism.

Alphabet

Explains alphabets for both individual automata and entire specifications.

Event declaration placement

Explains the placement of event declarations.

Shorter notations

Explains several shorter notations, including self loops, declaring multiple events with a single
declaration, multiple events on an edge, and nameless locations.

Data

Discrete variables

Explains discrete variables, guards, and updates.

Discrete variable value changes

Explains how and when discrete variables can change value.

Location/variable duality (1/2)

Explains the duality between locations and variables using a model of a counter.

Location/variable duality (2/2)

Explains the duality between locations and variables using a model of a lamp.

Global read, local write

Explains the concepts of global read and local write.

Monitoring

Explains monitoring, self loops, and monitor automata.

0Old and new values in assignments

Explains old and new values of variables in assignments, multiple assignments, and the order of
assignments.

The tau event

Explains the tau event.

Initial values of discrete variables

Explains initialization of discrete variables, including the use of default values and multiple
potential initial values.

Initialization predicates

Explains initialization in general, and initialization predicates in particular.

Using locations as variables

Explains the use of locations as variables.

State (exclusion) invariants

Explains state (exclusion) invariants.

State/event exclusion invariants

Explains state/event exclusion invariants.
Types and values

Types, values, and expressions

Explains the concepts of types, values, and expressions, as an introduction for the other lessons
in this category.

Values overview

Provides an overview of the available values, and divides them into categories.

Integers

Explains integer types, values, and commonly used expressions.

Ranged integers

Explains ranged integers.

Reals

Explains real types, values, and commonly used expressions.

Booleans

Explains boolean types, values, and commonly used expressions.

Strings

Explains string types, values, and commonly used expressions.

Enumerations

Explains enumeration types, values, and commonly used expressions.

Tuples

Explains tuple types, values, and commonly used expressions.

Lists

Explains list types, values, and commonly used expressions.

Bounded lists and arrays

Explains bounded lists, arrays, and their relations with regular lists.

Sets

Explains set types, values, and commonly used expressions.

Dictionaries

Explains dictionary types, values, and commonly used expressions.

Combining values

Explains how to combine values of different types.

If and switch expressions

Explains if and switch expressions.
Scalable solutions and reuse (1/2)

Constants

Explains the use of constants.

Algebraic variables

Explains the use of algebraic variables.

Algebraic variables and equations

Explains the use of equations to specify values of algebraic variables.

Type declarations

Explains the use of type declarations.
Time

Timing

Introduces the concept of timing.

Continuous variables

Explains the use of continuous variables.

Continuous variables and equations

Explains the use of equations to specify values of continuous variables.

Equations

Show the use of equations for both continuous and algebraic variables, by means of an example
of a non-linear system.

Variables overview

Provides an overview of the different kinds of variables in CIF, and their main differences.

https://en.wikipedia.org/wiki/Nonlinear_system

Urgency

Explains the concept of urgency, as well as the different forms of urgency.

Deadlock and livelock

Explains the concepts of dea