%%================================================ %% this file = nickalls13692vers4.tex --> fixes the index %% Project Gutenberg book No 13692 %%================================================ %% The gutenberg file 13692-t.tex has been modified by %% RWD Nickalls (dick@nickalls.org) June 26, 2018 %% in order to implement the Index and TOC correctly %% ---search for `RWD Nickalls' to see the changes i have made %% in this LaTeX file. %% %% This work was done on a Debian Linux platform using the 2017 TeXLive system. %% For details of LaTeX see: www.tug.org. %% %% To use the hyperlinks use Acrobat Reader for best results %% (because many ordinary pdf viewers fail to implement all the pdf tools) %%============================================== \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage[reqno]{amsmath} \usepackage{amssymb,graphicx,yfonts} \usepackage{makeidx} \makeindex \renewcommand{\chaptername}{Article} \DeclareMathOperator{\am}{am} \DeclareMathOperator{\amh}{amh} \DeclareMathOperator{\cg}{cg} \DeclareMathOperator{\cn}{cn} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\dn}{dn} \DeclareMathOperator{\gd}{gd} \DeclareMathOperator{\limdot}{lim.} \DeclareMathOperator{\moddot}{mod.} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\sg}{sg} \DeclareMathOperator{\sn}{sn} \DeclareMathOperator{\tg}{tg} %%%=======================begin{Nickalls}====================================== \usepackage{comment} \begin{comment} %% %% RWD Nickalls %% EMAIL: dick@nickalls.org %% July 5, 2018 %% Original gutenberg file modified by RWD Nickalls (dick@nickalls.org) July 2018 to facilitate makeindex, hyperref links and better margin alignment, and to enable working Index entry in TOC and in PDF bookmarks In order to see all changes by RWD Nickalls, then search the .tex file for instances of RWD Nickalls %%============introduction======================== %% These commands help make makeindex work correctly with hyperref. %% Really one has to either (a) edit the .ind file (awkward to do on the fly) %% or (b) edit the environment to include the \columnseprule and the %% \addcontentsline{toc}... line. Here I have fashioned a %% new working environment to be used with the .tex file. %% %%=============notes============================== %% The standard environment is defined in the LaTeX book.cls. %% This has been modified it by Springer (for their open source svmono.cls, which %% is one of my favourite classes). %% I have further modified it by (a) adding \columnseprule, and (b) deleting several %% of the Springer commands so it works OK here in the gutenberg case (book 13692): %% %% NOTE that the \addcontentsline{toc}... needs to be /inside/ the environment %% to work properly, as here: %% I don't fully understand how all these commands work, but they fix the gutenberg %% index problems OK. %% %% to make the index work from the PDF bookmarks %% (1) put \printindex command AFTER \backmatter %% %% to create the pdf file with hyperlinks and index using %% the makeindex TeX utlilty: %% (A) run pdflatex TWICE %% (B) run the command: makeindex nickalls13692vers4.idx %% (C) run pdflatex TWICE again. %% %% see the book: The LaTeX Companion (2004), 2nd ed: (makeindex = p 649) %% see the TUG website (www.tug.org) for details of LaTeX implementations %% eg TeXLive and the annual TeX Collection DVD for all platforms. %% %% %% **Remaining problems**: %% The hyperlinks from text (in the articles) to particular pages mostly fail %% to locate the correct page --- this is because %% sections \& subsections are not used in this book (ie these page links home in on the %% first page of the associated ``chapter'' etc. since Chapters are the only systematic %% reference points used in this LaTeX typesetting %% NB I have fixed one series of pagerefs as an example, (see Line 2510) and have left %% some notes there (search for \subsubsection{} ). %% The failure of the links to the Tables in the ListofTables is due to %% the same reason---I have now fixed these too. %% I have also fixed some indexing errors as well. %% %% Please send any feedback to Dick Nickalls (dick@nickalls.org). \end{comment} %%============ \makeatletter %% RWD Nickalls (dick@nickalls.org) July 2018 %% %% The following commands were extracted (and modified) %% from: svmono.cls - v 4.17, 2006 (Springer) %% an open-source monograph LaTeX class freely available from %% the Springer website. %% \def\indexname{Index}% %% \renewenvironment{theindex}{% \columnseprule=0.4pt %% this makes the vertical line in the index \columnsep 1cc \@nobreaktrue \begin{multicols}{2}[\chapter*{\indexname}]% \markboth{\MakeUppercase\indexname}{\MakeUppercase\indexname}% \addcontentsline{toc}{chapter}{\indexname}% \flushbottom \parindent\z@ \rightskip\z@ \@plus 40\p@ \parskip\z@ \@plus .3\p@\relax \flushbottom \let\item\@idxitem \def\,{\relax\ifmmode\mskip\thinmuskip \else\hskip0.2em\ignorespaces\fi}% \normalfont} {\end{multicols}\clearpage} %% %% \def\idxquad{\hskip 10\p@}% space that divides entry from number %% \def\@idxitem{\par\setbox0=\hbox{--\,--\,--\enspace}% \hangindent\wd0\relax} \def\subitem{\par\noindent\setbox0=\hbox{--\enspace}% second order \kern\wd0\setbox0=\hbox{--\,--\,--\enspace}% \hangindent\wd0\relax}% indexentry \def\subsubitem{\par\noindent\setbox0=\hbox{--\,--\enspace}% third order \kern\wd0\setbox0=\hbox{--\,--\,--\enspace}% \hangindent\wd0\relax}% indexentry \def\indexspace{\par \vskip 10\p@ \@plus5\p@ \@minus3\p@\relax} %% \makeatother %=========== \usepackage{multicol} %% required by makeindex to make 2 cols \usepackage{ifpdf} \ifpdf \usepackage[unicode]{hyperref} \hypersetup{hyperindex, hyperfigures=true, hyperfootnotes, colorlinks, urlcolor=blue, linkcolor=blue, bookmarksopenlevel=0, %%was 1, 0, %% (parts=-1, book=0, chap=1, article=2) bookmarksnumbered=true, bookmarkstype=toc, pdfpagelayout=SinglePage, %--------------------- pdftitle={Hyperbolic functions}, pdfauthor={James McMahon (1906) }, pdfsubject={mathematics}, pdfkeywords={Project Gutenberg, book No=13692}, pdfcreator=pdfLaTeX, } \usepackage[verbose]{microtype} %% for better margin alignment \usepackage{cmap} %% makes the pdf searchable \fi %%==============end{Nickalls}==================================================== \begin{document} \thispagestyle{empty} \small \begin{verbatim} The Project Gutenberg EBook of Hyperbolic Functions, by James McMahon This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Hyperbolic Functions Author: James McMahon Release Date: October 10, 2004 [EBook #13692] Language: English Character set encoding: TeX *** START OF THIS PROJECT GUTENBERG EBOOK HYPERBOLIC FUNCTIONS *** Produced by David Starner, Joshua Hutchinson, John Hagerson, and the Project Gutenberg On-line Distributed Proofreading Team. \end{verbatim} \normalsize \newpage \index{Equations!Differential|see{Differential Equation}} \index{Function!anti-gudermanian|see{Anti-gu\-der\-man\-i\-an}} \index{Function!anti-hyperbolic|see{Anti-hy\-per\-bo\-lic functions}} \index{Function!circular|see{Circular functions}} \index{Function!elliptic|see{Elliptic functions}} \index{Function!gudermanian|see{Gudermanian function}} \index{Imaginary|see{Complex}} \frontmatter %%=========================================== %% RWD Nickalls (dick@nickalls.org) \ifpdf\pdfbookmark[0]{Title}{Title}\fi %% 1 %%=========================================== \begin{center} \noindent \Large MATHEMATICAL MONOGRAPHS. \bigskip \footnotesize{\textsc{edited by}} \\ \normalsize \textsc{MANSFIELD MERRIMAN and ROBERT S. WOODWARD.} \bigskip\bigskip\huge %------------------------ %% RWD Nickalls (July 2018) %% use a backslash after the No.\ to force an inter word space here %% ie not an end-of-sentence space here. No.\ 4. %----------------------- \bigskip HYPERBOLIC FUNCTIONS. \bigskip\bigskip\footnotesize\textsc{by} \\ \bigskip\large JAMES McMAHON, \\ \footnotesize\textsc{Professor of Mathematics in Cornell University.} \bigskip\bigskip\normalsize NEW YORK: \\ \medskip JOHN WILEY \& SONS. \\ \medskip \textsc{London: CHAPMAN \& HALL, Limited.} \\ \medskip 1906. \bigskip\bigskip \tiny \textsc{Copyright 1896} \\ \textsc{by} \\ \textsc{MANSFIELD MERRIMAN and ROBERT S. WOODWARD} \\ \textsc{under the title} \\ \textsc{HIGHER MATHEMATICS} \normalsize \end{center} \bigskip\bigskip \scriptsize \noindent \textsc{Transcriber's Note:} \emph{I did my best to recreate the index.} \normalsize \newpage \fbox{\parbox{11cm}{ \begin{center} \textbf{MATHEMATICAL MONOGRAPHS.} \\ \small\textsc{edited by}\normalsize \\ \textbf{Mansfield Merriman and Robert S. Woodward.} \\ \smallskip \footnotesize \textbf{Octavo. Cloth.} \\ \end{center} \begin{tabbing} No. 99999\= \kill \textbf{No. 1.}\>\textbf{History of Modern Mathematics.} \\ \>By \textsc{David Eugene Smith.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 2.}\>\textbf{Synthetic Projective Geometry.} \\ \>By \textsc{George Bruce Halsted.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 3.}\>\textbf{Determinants.} \\ \>By \textsc{Laenas Gifford Weld.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 4.}\>\textbf{Hyperbolic Functions.} \\ \>By \textsc{James McMahon.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 5.}\>\textbf{Harmonic Functions.} \\ \>By \textsc{William E. Byerly.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 6.}\>\textbf{Grassmann's Space Analysis.} \\ \>By \textsc{Edward W. Hyde.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 7.}\>\textbf{Probability and Theory of Errors.} \\ \>By \textsc{Robert S. Woodward.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 8.}\>\textbf{Vector Analysis and Quaternions.} \\ \>By \textsc{Alexander Macfarlane.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 9.}\>\textbf{Differential Equations.} \\ \>By \textsc{William Woolsey Johnson.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 10.}\>\textbf{The Solution of Equations.} \\ \>By \textsc{Mansfield Merriman.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 11.}\>\textbf{Functions of a Complex Variable.} \\ \>By \textsc{Thomas S. Fiske.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 12.}\>\textbf{The Theory of Relativity.} \\ \>By \textsc{Robert D. Carmichael.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 13.}\>\textbf{The Theory of Numbers.} \\ \>By \textsc{Robert D. Carmichael.} \$1.00 \emph{net}. \\ \smallskip \textbf{No. 14.}\>\textbf{Algebraic Invariants.} \\ \>By \textsc{Leonard E. Dickson.} \$1.25 \emph{net}. \\ \end{tabbing} \begin{center} \smallskip \normalsize PUBLISHED BY \\ \smallskip \textbf{JOHN WILEY \& SONS, Inc., NEW YORK. \\ CHAPMAN \& HALL, Limited, LONDON.} \end{center}}} \chapter{Editors' Preface.} The volume called Higher Mathematics, the first edition of which was published in 1896, contained eleven chapters by eleven authors, each chapter being independent of the others, but all supposing the reader to have at least a mathematical training equivalent to that given in classical and engineering colleges. The publication of that volume is now discontinued and the chapters are issued in separate form. In these reissues it will generally be found that the monographs are enlarged by additional articles or appendices which either amplify the former presentation or record recent advances. This plan of publication has been arranged in order to meet the demand of teachers and the convenience of classes, but it is also thought that it may prove advantageous to readers in special lines of mathematical literature. It is the intention of the publishers and editors to add other monographs to the series from time to time, if the call for the same seems to warrant it. Among the topics which are under consideration are those of elliptic functions, the theory of numbers, the group theory, the calculus of variations, and non-Euclidean geometry; possibly also monographs on branches of astronomy, mechanics, and mathematical physics may be included. It is the hope of the editors that this form of publication may tend to promote mathematical study and research over a wider field than that which the former volume has occupied. \smallskip \footnotesize December, 1905. \normalsize \chapter{Author's Preface.} This compendium of hyperbolic trigonometry was first published as a chapter in Merriman and Woodward's Higher Mathematics. There is reason to believe that it supplies a need, being adapted to two or three different types of readers. College students who have had elementary courses in trigonometry, analytic geometry, and differential and integral calculus, and who wish to know something of the hyperbolic trigonometry on account of its important and historic relations to each of those branches, will, it is hoped, find these relations presented in a simple and comprehensive way in the first half of the work. Readers who have some interest in imaginaries are then introduced to the more general trigonometry of the complex plane, where the circular and hyperbolic functions merge into one class of transcendents, the singly periodic functions, having either a real or a pure imaginary period. For those who also wish to view the subject in some of its practical relations, numerous applications have been selected so as to illustrate the various parts of the theory, and to show its use to the physicist and engineer, appropriate numerical tables being supplied for these purposes. With all these things in mind, much thought has been given to the mode of approaching the subject, and to the presentation of fundamental notions, and it is hoped that some improvements are discernible. For instance, it has been customary to define the hyperbolic functions in relation to a sector of the rectangular hyperbola, and to take the initial radius of the sector coincident with the principal radius of the curve; in the present work, these and similar restrictions are discarded in the interest of analogy and generality, with a gain in symmetry and simplicity, and the functions are defined as certain characteristic ratios belonging to any sector of any hyperbola. Such definitions, in connection with the fruitful notion of correspondence of points on conics, lead to simple and general proofs of the addition-theorems, from which easily follow the conversion-formulas, the derivatives, the Maclaurin expansions, and the exponential expressions. The proofs are so arranged as to apply equally to the circular functions, regarded as the characteristic ratios belonging to any elliptic sector. For those, however, who may wish to start with the exponential expressions as the definitions of the hyperbolic functions, the appropriate order of procedure is indicated on page~\pageref{def hyper as exp}, and a direct mode of bringing such exponential definitions into geometrical relation with the hyperbolic sector is shown in the Appendix. \enlargethispage*{1000pt} \smallskip \footnotesize December, 1905. \normalsize %%=========================================== %% RWD Nickalls (dick@nickalls.org) \cleardoublepage \ifpdf\pdfbookmark[0]{Contents}{Contents}\fi %%=========================================== \tableofcontents \listoftables %% ART. 1. CORRESPONDENCE OF POINTS ON CONICS ...Page 7 %% 2. AREAS OF CORRESPONDING TRIANGLES ...9 %% 3. AREAS OF CORRESPONDING SECTORS ...9 %% 4. CHARACTERISTIC RATIOS OF SECTORIAL MEASURES ...10 %% 5. RATIOS EXPRESSED AS TRIANGLE-MEASURES ...10 %% 6. FUNCTIONAL RELATIONS FOR ELLIPSE ...11 %% 7. FUNCTIONAL RELATIONS FOR HYPERBOLA ...11 %% 8. RELATIONS BETWEEN HYPERBOLIC FUNCTIONS ...12 %% 9. VARIATIONS OF THE HYPERBOLIC FUNCTIONS ...14 %% 10. ANTI HYPERBOLIC FUNCTIONS ...16 %% 11. FUNCTIONS OF SUMS AND DIFFERENCES ...16 %% 12. CONVERSION FORMULAS ...18 %% 13. LIMITING RATIOS ...19 %% 14. DERIVATIVES OF HYPERBOLIC FUNCTIONS ...20 %% 15. DERIVATIVES OF ANTI-HYPERBOLIC FUNCTIONS ...22 %% 16. EXPANSION OF HYPERBOLIC FUNCTIONS ...23 %% 17. EXPONENTIAL EXPRESSIONS ...24 %% 18. EXPANSION OF ANTI-FUNCTIONS ...25 %% 19. LOGARITHMIC EXPRESSION OF ANTI-FUNCTIONS ...27 %% 20. THE GUDERMANIAN FUNCTION ...28 %% 21. CIRCULAR FUNCTIONS OF GUDERMANIAN ...28 %% 22. GUDERMANIAN ANGLE ...29 %% 23. DERIVATIVES OF GUDERMANIAN AND INVERSE ...30 %% 24. SERIES FOR GUDERMANIAN AND ITS INVERSE ...31 %% 25. GRAPHS OF HYPERBOLIC FUNCTIONS ...32 %% 26. ELEMENTARY INTEGRALS ...35 %% 27. FUNCTIONS OF COMPLEX NUMBERS ..38 %% 28. ADDITION THEOREMS FOR COMPLEXES ...40 %% 29. FUNCTIONS OF PURE IMAGINARIES ...41 %% 30. FUNCTIONS OF \emph{x + iy} IN THE FORM \emph{X + iY} ...43 %% 31. THE CATENARY ...47 %% 32. THE CATENARY OF UNIFORM STRENGTH ...49 %% 33. THE ELASTIC CATENARY ...50 %% 34. THE TRACTORY ...51 %% 35. THE LOXODROME ...52 %% 36 COMBINED FLEXURE AND TENSION ...53 %% 37. ALTERNATING CURRENTS ...55 %% 38. MISCELLANEOUS APPLICATIONS ...60 %% 39. EXPLANATION OF TABLES ...62 %% %% TABLE I. HYPERBOLIC FUNCTIONS ...64 %% II. VALUES OF \textsc{cosh}(\emph{x+iy}) %% AND \textsc{sinh}(\emph{x+iy}) ...66 %% III. VALUES OF gd\emph{u} AND $0^\circ$ ...70 %% IV. VALUES OF gd\emph{u}, \textsc{log sinh} \emph{u}, %% \textsc{log cosh} \emph{u} ...70 %% %% APPENDIX. HISTORICAL AND BIBLIOGRAPHICAL ...71 %% EXPONENTIAL EXPRESSIONS AS DEFINITIONS ...72 %% %% INDEX ...73 \mainmatter \chapter{Correspondence of Points on Conics.}% \index{Corresponding points!on conics}% \index{Geometrical treatment of hyperbolic functions|(}% \index{Hyperbola|(} To prepare the way for a general treatment of the hyperbolic functions a preliminary discussion is given on the relations, between hyperbolic sectors. The method adopted is such as to apply at the same time to sectors of the ellipse, including the circle; and the analogy of the hyperbolic and circular functions will be obvious at every step, since the same set of equations can be read in connection with either the hyperbola or the ellipse.\footnote{ The hyperbolic functions are not so named on account of any analogy with what are termed Elliptic Functions. ``The elliptic integrals, and thence the elliptic functions, derive their name from the early attempts of mathematicians at the rectification of the ellipse.\,\ldots To a certain extent this is a disadvantage; \ldots\ because we employ the name hyperbolic function to denote $\cosh u, \sinh u$, etc., by analogy with which the elliptic functions would be merely the circular functions $\cos \phi, \sin \phi$, etc.\,\ldots'' (Greenhill, Elliptic Functions, p.\ 175.)\label{fnp7}}\index{Greenhill's!Elliptic Functions} It is convenient to begin with the theory of correspondence of points on two central conics of like species, i.e. either both ellipses or both hyperbolas.% \index{Circular functions}\index{Elliptic!functions}% \index{Elliptic!integrals}\index{Elliptic!sectors} \begin{center} \includegraphics[width=80mm]{fig01.png} \end{center} To obtain a definition of corresponding points, let $O_1A_1, O_1B_1$ be conjugate radii of a central conic, and $O_2A_2, O_2B_2$ conjugate radii of any other central conic of the same species; let $P_1, P_2$ be two points on the curves; and let their coordinates referred to the respective pairs of conjugate directions be $(x_1, y_1), (x_2, y_2)$; then, by analytic geometry, \begin{equation} \frac{x_1^2}{a_1^2} \pm \frac{y_1^2}{b_1^2} = 1,\qquad \frac{x_2^2}{a_2^2} \pm \frac{y_2^2}{b_2^2} = 1. \tag{1} \end{equation} Now if the points $P_1, P_2$ be so situated that \begin{equation} \frac{x_1}{a_1} = \frac{x_2}{a_2},\qquad \frac{y_1}{b_1} = \frac{y_2}{b_2}, \tag{2} \end{equation} the equalities referring to sign as well as magnitude, then $P_1, P_2$ are called corresponding points in the two systems. If $Q_1, Q_2$ be another pair of correspondents, then the sector and triangle $P_1O_1Q_1$ are said to correspond respectively with the sector and triangle $P_2O_2Q_2$. These definitions will apply also when the conies coincide, the points $P_1, P_2$ being then referred to any two pairs of conjugate diameters of the same conic. In discussing the relations between corresponding areas it is convenient to adopt the following use of the word ``measure'': The measure of any area connected with a given central conic is the ratio which it bears to the constant area of the triangle formed by two conjugate diameters of the same conic.% \index{Areas}\index{Measure!defined} \index{Measure!of sector|(}For example, the measure of the sector $A_1O_1P_1$ is the ratio \begin{equation*} \frac{\text{sector }A_1O_1P_1}{\text{triangle }A_1O_1B_1} \end{equation*} and is to be regarded as positive or negative according as $A_1O_1P_1$ and $A_1O_1B_1$ are at the same or opposite sides of their common initial line.\index{Hyperbola|)} \chapter{Areas of Corresponding Triangles.}% \index{Areas} The areas of corresponding triangles have equal measures. For, let the coordinates of $P_1, Q_1$ be $(x_1, y_1), (x'_1, y'_1)$, and let those of their correspondents $P_2, Q_2$ be $(x_2, y_2), (x'_2, y'_2)$; let the triangles $P_1O_1Q_1, P_2O_2Q_2$ be $T_1, T_2$, and let the measuring triangles $A_1O_1B_1, A_2O_2B_2$ be $K_1, K_2$, and their angles $\omega_1, \omega_1$; then, by analytic geometry, taking account of both magnitude and direction of angles, areas, and lines, \begin{gather*} \begin{aligned} \frac{T_1}{K_1} &= \frac{\frac{1}{2}(x_1y'_1 - x'_1y_1)\sin\omega_1} {\frac{1}{2} a_1b_1\sin\omega_1} = \frac{x_1}{a_1} \cdot \frac{y'_1}{b_1} - \frac{x'_1}{a_1} \cdot \frac{y_1}{b_1}; \\ \frac{T_2}{K_2} &= \frac{\frac{1}{2}(x_2y'_2 - x'_2y_2)\sin\omega_2} {\frac{1}{2} a_2b_2\sin\omega_2} = \frac{x_2}{a_2} \cdot \frac{y'_2}{b_2} - \frac{x'_2}{a_2} \cdot \frac{y_2}{b_2}. \end{aligned} \\ \intertext{Therefore, by (2),} \frac{T_1}{K_1} = \frac{T_2}{K_2}. \tag{3} \end{gather*}\index{Corresponding points!on sectors and triangles} \chapter{Areas of Corresponding Sectors.}\index{Sectors of conics} The areas of corresponding sectors have equal measures. For conceive the sectors $S_1, S_2$ divided up into infinitesimal corresponding sectors; then the respective infinitesimal corresponding triangles have equal measures (Art.~2); but the given sectors are the limits of the sums of these infinitesimal triangles, hence \begin{equation*} \frac{S_1}{K_1} = \frac{S_2}{K_2}. \tag{4} \end{equation*} In particular, the sectors $A_1O_1P_1, A_2O_2P_2$ have equal measures; for the initial points $A_1, A_2$ are corresponding points. It may be proved conversely by an obvious reductio ad absurdum that if the initial points of two equal-measured sectors correspond, then their terminal points correspond. Thus if any radii $O_1A_1, O_2A_2$ be the initial lines of two equal-measured sectors whose terminal radii are $O_1P_1, O_2P_2$, then $P_1, P_2$ are corresponding points referred respectively to the pairs of conjugate directions $O_1A_1, O_1B_1$, and $O_2A_2, O_2A_B$; that is, \begin{equation*} \frac{x_1}{a_1} = \frac{x_2}{a_2},\quad \frac{y_1}{b_1} = \frac{y_2}{b_2}. \end{equation*} \small \begin{enumerate} \item[Prob.~1.] Prove that the sector $P_1O_1Q_1$, is bisected by the line joining $O_1$, to the mid-point of $P_1Q_1$. (Refer the points $P_1, Q_1$, respectively, to the median as common axis of $x$, and to the two opposite conjugate directions as axis of $y$, and show that $P_1, Q_1$ are then corresponding points.) \item[Prob.~2.] Prove that the measure of a circular sector is equal to the radian measure of its angle. \item[Prob.~3.] Find the measure of an elliptic quadrant, and of the sector included by conjugate radii. \end{enumerate} \normalsize \chapter{Charactersitic Ratios of Sectorial Measures.} Let $A_1O_1P_1 = S_1$, be any sector of a central conic; draw $P_1M_1$ ordinate to $O_1A_1$, i.e.\ parallel to the tangent at $A_1$; let $O_1M_1 = x_1, M_1P_1 = y_1, O_1A_1 = a_1$, and the conjugate radius $O_1B_1 = b_1$; then the ratios $\dfrac{x_1}{a_1}, \dfrac{y_1}{b_1}$ are called the characteristic ratios of the given sectorial measure $\dfrac{S_1}{K_1}$. These ratios are constant both in magnitude and sign for all sectors of the same measure and species wherever these may be situated (Art.~3). Hence there exists a functional relation between the sectorial measure and each of its characteristic ratios.\label{sectoral-measures}\index{Characteristic ratios}\index{Ratios!characteristic} \chapter{Ratios Expressed as Triangle-measures.} The triangle of a sector and its complementary triangle are measured by the two characteristic ratios. For, let the triangle $A_1O_1P_1$ and its complementary triangle $P_1O_1B_1$ be denoted by $T_1, T'_1$; then \begin{equation} \left. \begin{aligned} \frac{T_1}{K_1} &=\frac{\frac{1}{2} a_1y_1 \sin\omega_1} {\frac{1}{2} a_1b_1 \sin\omega_1} =\frac{y_1}{b_1}, \\ \frac{T'_1}{K_1}&=\frac{\frac{1}{2} b_1x_1 \sin\omega_1} {\frac{1}{2} a_1b_1 \sin\omega_1} =\frac{x_1}{a_1}. \end{aligned} \right\} \tag{5} \end{equation}\index{Complementary triangles}\index{Geometrical treatment of hyperbolic functions|)} \chapter{Functional Relations for Ellipse.} \begin{center} \includegraphics[width=60mm]{fig02.png} \end{center} The functional relations that exist between the sectorial measure and each of its characteristic ratios are the same for all elliptic, including circular, sectors (Art.~4). Let $P_1, P_2$ be corresponding points on an ellipse and a circle, referred to the conjugate directions $O_1A_1, O_1B_1$ and $O_2A_2, O_2B_2$, the latter pair being at right angles; let the angle $A_2O_2P_2 = \theta$ in radian measure; then \begin{gather*} \frac{S_2}{K_2} = \frac{\frac{1}{2} a_2^2\theta}{\frac{1}{2} a_2^2} = \theta. \tag{6} \\ \therefore \frac{x_2}{a_2} = \cos \frac{S_2}{K_2}, \quad \frac{y_2}{b_2} = \sin \frac{S_2}{K_2}; \qquad [ a_2 = b_2 \\ \intertext{hence, in the ellipse, by Art.~3,} \frac{x_1}{a_1} = \cos \frac{S_1}{K_1},\quad \frac{y_1}{b_1} = \sin \frac{S_1}{K_1}. \tag{7} \end{gather*}\index{Circular functions} \small \begin{enumerate} \item[Prob.~4.] Given $x_1 = \tfrac{1}{2} a_1$; find the measure of the elliptic sector $A_1O_1P_1$. Also find its area when $a_1 = 4, b_1 = 3, \omega = 60^\circ$. \item[Prob.~5.] Find the characteristic ratios of an elliptic sector whose measure is $\frac{1}{4}\pi$. \item[Prob.~6.] Write down the relation between an elliptic sector and its triangle. (See Art.~5.)\index{Measure!of sector|)} \end{enumerate} \normalsize \chapter{Functional Relations for Hyperbola.}% \index{Function!hyperbolic, defined}% \index{Hyperbolic functions!defined}% \index{Hyperbolic functions!relations among}% \index{Relations among functions} The functional relations between a sectorial measure and its characteristic ratios in the case of the hyperbola may be written in the form \begin{equation*} \frac{x_1}{a_1} = \cosh \frac{S_1}{K_1},\quad \frac{y_1}{b_1} = \sinh \frac{S_1}{K_1}, \end{equation*} and these express that the ratio of the two lines on the left is a certain definite function of the ratio of the two areas on the right. These functions are called by analogy the hyperbolic cosine and the hyperbolic sine. Thus, writing $u$ for $\dfrac{S_1}{K_1}$ the two equations \begin{equation*} \frac{x_1}{a_1} = \cosh u,\quad \frac{y_1}{b_1} = \sinh u \tag{8} \end{equation*} serve to define the hyperbolic cosine and sine of a given sectorial measure $u$; and the hyperbolic tangent, cotangent, secant, and cosecant are then defined as follows: \begin{equation} \left. \begin{aligned} \tanh u = \frac{\sinh u}{\cosh u}, &\quad \coth u = \frac{\cosh u}{\sinh u},\\ \sech u = \frac{ 1 }{\cosh u}, &\quad \csch u = \frac{ 1 }{\sinh u}. \end{aligned} \right\} \tag{9} \end{equation} The names of these functions may be read ``h-cosine,'' ''h-sine,'' ``h-tangent,'' etc., or ``hyper-cosine,'' etc. \chapter{Relations Among Hyperbolic Functions.} Among the six functions there are five independent relations, so that when the numerical value of one of the functions is given, the values of the other five can be found. Four of these relations consist of the four defining equations (9). The fifth is derived from the equation of the hyperbola \begin{gather*} \frac{x_1^2}{a_1^2} - \frac{y_1^2}{b_1^2} = 1,\\ \intertext{giving} \cosh^2 u - \sinh^2 u = 1. \tag{10} \end{gather*} By a combination of some of these equations other subsidiary relations may be obtained; thus, dividing (10) successively by $\cosh^2 u, \sinh^2 u$, and applying (9), give \begin{equation} \left. \begin{aligned} 1 - \tanh^2 u &= \sech^2 u, \\ \coth^2 u - 1 &= \csch^2 u. \end{aligned} \right\} \tag{11} \end{equation} Equations (9), (10), (11) will readily serve to express the value of any function in terms of any other. For example, when $\tanh u$ is given, \begin{gather*} \coth u = \frac{1}{\tanh u}, \quad \sech u = \sqrt{1 - \tanh^2 u}, \\ \cosh u = \frac{ 1 }{\sqrt{1-\tanh^2 u}}, \quad \sinh u = \frac{\tanh u}{\sqrt{1-\tanh^2 u}}, \\ \csch u = \frac{\sqrt{1-\tanh^2 u}}{\tanh u}. \end{gather*} The ambiguity in the sign of the square root may usually be removed by the following considerations:% \index{Ambiguity of value}\index{Multiple values} The functions $\cosh u, \sech u$ are always positive, because the primary characteristic ratio $\dfrac{x_1}{a_1}$ is positive, since the initial line $O_1A_1$ and the abscissa $O_1M_1$ are similarly directed from $O_1$ on whichever branch of the hyperbola $P_1$ maybe situated; but the functions $\sinh u, \tanh u, \coth u, \csch u$, involve the other characteristic ratio $\dfrac{y_1}{b_1}$, which is positive or negative according as $y_1$ and $b_1$ have the same or opposite signs, i.e., as the measure $u$ is positive or negative; hence these four functions are either all positive or all negative. Thus when any one of the functions $\sinh u, \tanh u, \csch u, \coth u$, is given in magnitude and sign, there is no ambiguity in the value of any of the six hyperbolic functions; but when either $\cosh u$ or $\sech u$ is given, there is ambiguity as to whether the other four functions shall be all positive or all negative. \begin{center} \includegraphics[width=50mm]{fig03.png} \end{center} The hyperbolic tangent may be expressed as the ratio of two lines. For draw the tangent line $AC = t$; then \begin{align*} \tanh u &= \frac{y}{b} : \frac{x}{a} = \frac{a}b \cdot \frac{y}x \\ &= \frac{a}{b} \cdot \frac{t}{a} = \frac{t}{b}. \tag{12} \end{align*} The hyperbolic tangent is the measure of the triangle $OAC$. For \begin{gather} \frac{OAC}{OAB} = \frac{at}{ab} = \frac{t}{b} = \tanh u. \tag{13} \end{gather} Thus the sector $AOP$, and the triangles $AOP, POB, AOC$, are proportional to $u, \sinh u, \cosh u, \tanh u$ (eqs.\ 5, 13); hence \begin{equation} \sinh u > u > \tanh u. \tag{14} \end{equation} \small \begin{enumerate} \item[Prob.~7.] Express all the hyperbolic functions in terms of $\sinh{u}$. Given $\cosh{u} = 2$, find the values of the other functions. \item[Prob.~8.] Prove from eqs.\ 10, 11, that $\cosh{u} > \sinh{u}, \cosh{u} > 1, \tanh{u} < 1, \sech{u} < 1$. \item[Prob.~9.] In the figure of Art.~1, let $OA = 2, OB = 1, AOB = 60^{\circ}$, and area of sector $AOP = 3$; find the sectorial measure, and the two characteristic ratios, in the elliptic sector, and also in the hyperbolic sector; and find the area of the triangle $AOP$. (Use tables of cos, sin, cosh, sinh.)% \index{Areas} \item[Prob.~10.] Show that $\coth{u}, \sech{u}, \csch{u}$ may each be expressed as the ratio of two lines, as follows: Let the tangent at $P$ make on the conjugate axes $OA, OB$, intercepts $OS = m, OT = n$; let the tangent at $B$, to the conjugate hyperbola, meet $OP$ in $R$, making $BR = l$; then \begin{equation*} \coth{u} = \frac{l}{a},\quad \sech{u} = \frac{m}{a},\quad \csch{u} = \frac{n}{b}. \end{equation*} \item[Prob.~11.] The measure of segment $AMP$ is $\sinh{u}\cosh{u} - u$. Modify this for the ellipse. Modify also eqs.\ 10--14, and probs.\ 8, 10. \end{enumerate} \normalsize \chapter{Variations of the Hyperbolic Functions.}% \index{Variation of hyperbolic functions} \begin{center} \includegraphics[width=40mm]{fig04.png}\label{ch9fig} \end{center} Since the values of the hyperbolic functions depend only on the sectorial measure, it is convenient, in tracing their variations, to consider only sectors of one half of a rectangular hyperbola, whose conjugate radii are equal, and to take the principal axis $OA$ as the common initial line of all the sectors. The sectorial measure $u$ assumes every value from $-\infty$, through $0$, to $+\infty$, as the terminal point $P$ comes in from infinity on the lower branch, and passes to infinity on the upper branch; that is, as the terminal line $OP$ swings from the lower asymptotic position $y = -x$, to the upper one, $y = x$. It is here assumed, but is proved in Art.~17, that the sector $AOP$ becomes infinite as $P$ passes to infinity. Since the functions $\cosh{u}, \sinh{u}, \tanh{u}$, for any position of $OP$, are equal to the ratios of $x, y, t$, to the principal radius $a$, it is evident from the figure that \begin{equation} \cosh 0 = 1,\quad \sinh 0 = 0,\quad \tanh 0 = 0, \tag{15} \end{equation} and that as $u$ increases towards positive infinity, $\cosh u, \sinh u$ are positive and become infinite, but $\tanh u$ approaches unity as a limit; thus \begin{equation} \cosh \infty = \infty,\quad \sinh \infty = \infty,\quad \tanh \infty = 1. \tag{16} \end{equation} Again, as $u$ changes from zero towards the negative side, $\cosh u$ is positive and increases from unity to infinity, but $\sinh u$ is negative and increases numerically from zero to a negative infinite, and $\tanh u$ is also negative and increases numerically from zero to negative unity; hence \begin{equation} \cosh (-\infty) = \infty,\quad \sinh (-\infty) = -\infty,\quad \tanh (-\infty) = -1. \tag{17} \end{equation} For intermediate values of $u$ the numerical values of these functions can be found from the formulas of Arts.\ 16, 17, and are tabulated at the end of this chapter. A general idea of their manner of variation can be obtained from the curves in Art.~25, in which the sectorial measure $u$ is represented by the abscissa, and the values of the functions $\cosh u$, $\sinh u$, etc., are represented by the ordinate. The relations between the functions of $-u$ and of $u$ are evident from the definitions, as indicated above, and in Art.~8. Thus \begin{equation} \left. \begin{aligned} \cosh (-u) &= +\cosh u, &\quad \sinh (-u) &= -\sinh u, \\ \sech (-u) &= +\sech u, &\quad \csch (-u) &= -\csch u, \\ \tanh (-u) &= -\tanh u, &\quad \coth (-u) &= -\coth u. \\ \end{aligned} \right\} \tag{18} \end{equation} \small \begin{enumerate} \item[Prob.~12.] Trace the changes in $\sech u, \coth u, \csch u$, as $u$ passes from $-\infty$ to $+\infty$. Show that $\sinh u, \cosh u$ are infinites of the same order when $u$ is infinite. (It will appear in Art.~17 that $\sinh u, \cosh u$ are infinites of an order infinitely higher than the order of $u$.) \item[Prob.~13.] Applying eq.\ (12) to figure, page~\pageref{ch9fig}, prove $\tanh u_1 = \tan AOP$. \end{enumerate} \normalsize \chapter{Anti-hyperbolic Functions.}% \index{Anti-hyperbolic functions} The equations $\dfrac{x}{a} = \cosh u, \dfrac{y}{b} = \sinh u, \dfrac{t}{b} = \tanh u$, etc., may also be expressed by the inverse notation $u = \cosh^{-1}\dfrac{x}{a}, u = \sinh^{-1}\dfrac{y}{b}, u = \tanh^{-1}\dfrac{t}{b}$, etc., which may be read: ``$u$ is the sectorial measure whose hyperbolic cosine is the ratio $x$ to $a$,'' etc.; or ``$u$ is the anti-h-cosine of $\dfrac{x}{a}$,'' etc. Since there are two values of $u$, with opposite signs, that correspond to a given value of $\cosh u$, it follows that if $u$ be determined from the equation $\cosh u = m$, where $m$ is a given number greater than unity, $u$ is a two-valued function of $m$. The symbol $\cosh^{-1} m$ will be used to denote the positive value of $u$ that satisfies the equation $\cosh u = m$. Similarly the symbol $\sech^{-1} m$ in will stand for the positive value of $u$ that satisfies the equation $\sech u = m$. The signs of the other functions $\sinh^{-1}m, \tanh^{-1}m, \coth^{-1}m, \csch^{-1}m$, are the same as the sign of $m$. Hence all of the anti-hyperbolic functions of real numbers are one-valued.% \index{Ambiguity of value}\index{Multiple values} \small \begin{enumerate} \item[Prob.~14.] Prove the following relations: \begin{equation*} \cosh^{-1}m = \sinh^{-1}\sqrt{m^2-1},\quad \sinh^{-1}m = \pm \cosh^{-1}\sqrt{m^2+1}, \end{equation*} the upper or lower sign being used according as $m$ is positive or negative. Modify these relations for $\sin^{-1}, \cos^{-1}$. \item[Prob.~15.] In figure, Art.~1, let $OA = 2, OB = 1, AOB = 60^\circ$; find the area of the hyperbolic sector $AOP$, and of the segment $AMP$, if the abscissa of $P$ is 3. (Find $\cosh^{-1}$ from the tables for $\cosh$.) \end{enumerate} \normalsize \chapter{Functions of Sums and Differences.}% \index{Addition-theorems}\index{Functions!of sum and difference}% \index{Geometrical treatment of hyperbolic functions} (a) To prove the difference-formulas \begin{equation} \left. \begin{aligned} \sinh(u-v) &= \sinh u \cosh v - \cosh u \sinh v, \\ \cosh(u-v) &= \cosh u \cosh v - \sinh u \sinh v. \end{aligned} \right\} \tag{19} \end{equation}\index{Difference formula}% \index{Hyperbolic funcitons!addition-theorems for} \begin{center} \includegraphics[width=80mm]{fig05.png} \end{center} Let $OA$ be any radius of a hyperbola, and let the sectors $AOP, AOQ$ have the measures $u, v$; then $u-v$ is the measure of the sector $QOP$. Let $OB, OQ'$ be the radii conjugate to $OA, OQ$; and let the coördinates of $P, Q, Q'$ be $(x_1, y_1)$, $(x, y)$, $(x', y')$ with reference to the axes $OA, OB$; then \begin{align*} \sinh (u-v) &= \sinh\frac{\text{sector }QOP}{K} = \frac{\text{triangle }QOP}{K}\quad \tag*{[Art.~5.} \\ &= \frac{\frac{1}{2}(xy_1 - x_1y)\sin\omega} {\frac{1}{2}a_1b_1\sin\omega} = \frac{y_1}{b_1}\cdot\frac{x}{a_1} - \frac{y}{b_1}\cdot\frac{x_1}{a_1} \notag \\ &= \sinh u \cosh v - \cosh u \sinh v; \notag \end{align*} \begin{align*} \cosh(u-v) &= \cosh\frac{\text{sector }QOP}{K} = \frac{\text{triangle }POQ'}{K}\tag*{[Art.~5.} \\ &= \frac{\frac{1}{2}(x_1y' - y_1x')\sin\omega} {\frac{1}{2} a_1b_1\sin\omega} = \frac{y'}{b_1}\cdot\frac{x_1}{a_1} - \frac{y}{b_1}\cdot\frac{x'}{a_1}; \\ \intertext{but} \frac{y'}{b_1} &= \frac{x}{a_1}, \qquad \frac{x'}{a_1} = \frac{y}{b_1}, \tag{20} \end{align*} since $Q, Q'$ are extremities of conjugate radii; hence \begin{equation*} \cosh(u-v) = \cosh u \cosh v - \sinh u \sinh v. \end{equation*} In the figures $u$ is positive and $v$ is positive or negative. Other figures may be drawn with $u$ negative, and the language in the text will apply to all. In the case of elliptic sectors, similar figures may be drawn, and the same language will apply, except that the second equation of (20) will be $\dfrac{x'}{a_1} = \dfrac{-y}{b_1}$; therefore \begin{align*} \sin(u-v) &= \sin u \cos v - \cos u \sin v,\\ \cos(u-v) &= \cos u \cos v + \sin u \sin v. \end{align*}\index{Circular functions} (b) To prove the sum-formulas \begin{equation} \left. \begin{aligned} \sinh(u + v) &= \sinh u \cosh v + \cosh u \sinh v,\\ \cosh(u + v) &= \cosh u \cosh v + \sinh u \sinh v. \end{aligned} \right\} \tag{21} \end{equation} These equations follow from (19) by changing $v$ into $-v$, and then for $\sinh (-v)$, $\cosh (-v)$, writing $-\sinh v$, $\cosh v$ (Art.\ 9, eqs.\ (18)). \medskip (c) To prove that \begin{equation} \tanh (u \pm v) = \frac{\tanh u \pm \tanh v} {1 \pm \tanh u \tanh v}. \tag{22} \end{equation} Writing $\tanh (u \pm v) = \dfrac{\sinh(u \pm v)}{\cosh(u \pm v)}$, expanding and dividing numerator and denominator by $\cosh u \cosh v$, eq.\ (22) is obtained. \small \begin{enumerate} \item[Prob.~16.] Given $\cosh u = 2, \cosh v = 3$, find $\cosh(u + v)$. \item[Prob.~17.] Prove the following identities: \begin{enumerate} \item $\sinh 2u = 2 \sinh u \cosh u$. \item $\cosh 2u = \cosh^2 u + \sinh^2 u = 1 + 2 \sinh^2 u = 2 \cosh^2 u - 1$. \item $1 + \cosh u = 2 \cosh^2 \frac{1}{2}u, \cosh u - 1 = 2 \sinh^2 \frac{1}{2}u$. \item $\tanh \frac{1}{2}u = \dfrac{\sinh u}{1 + \cosh u} = \dfrac{\cosh u - 1}{\sinh u} = \left( \dfrac{\cosh u - 1}{\cosh u + 1}\right) ^{\frac{1}{2}}$. \item $\sinh 2u = \dfrac{2\tanh u}{1 - \tanh^2 u},\ \cosh 2u = \dfrac{1 + \tanh^2 u}{1 - \tanh^2 u}$. \item $\sinh 3u = 3 \sinh u + 4 \sinh^3 u,\ \cosh 3u = 4 \cosh^3u - 3 \cosh u$. \item $\cosh u + \sinh u = \dfrac{1 + \tanh\frac{1}{2}u} {1 - \tanh\frac{1}{2}u}$. \item $(\cosh u + \sinh u)(\cosh v + \sinh v) = \cosh (u+v) + \sinh (u+v)$. \item Generalize (h); and show also what it becomes when $u = v = \ldots$ \item $\sinh^2 x \cos^2 y + \cosh^2 x \sin^2 y = \sinh^2 x + \sin^2 y$. \item $\cosh^{-1}m \pm \cosh^{-1}n = \cosh^{-1}\left[ mn \pm\sqrt{(m^2-1)(n^2-1)} \right]$. \item $\sinh^{-1}m \pm \sinh^{-1}n = \sinh^{-1}\left[m\sqrt{1+n^2}\pm n\sqrt{1+m^2}\right]$. \end{enumerate} \item[Prob.~18.] What modifications of signs are required in (21), (22), in order to pass to circular functions? \item[Prob.~19.] Modify the identities of Prob. 17 for the same purpose. \end{enumerate} \normalsize \chapter{Conversion Formulas.}\index{Conversion-formulas} To prove that \begin{equation} \left. \begin{aligned} \cosh u_1 + \cosh u_2 &= 2\cosh\tfrac{1}{2}(u_1+u_2) \cosh\tfrac{1}{2}(u_1-u_2), \\ \cosh u_1 - \cosh u_2 &= 2\sinh\tfrac{1}{2}(u_1+u_2) \sinh\tfrac{1}{2}(u_1-u_2), \\ \sinh u_1 + \sinh u_2 &= 2\sinh\tfrac{1}{2}(u_1+u_2) \cosh\tfrac{1}{2}(u_1-u_2), \\ \sinh u_1 - \sinh u_2 &= 2\cosh\tfrac{1}{2}(u_1+u_2) \sinh\tfrac{1}{2}(u_1-u_2). \end{aligned} \right\} \tag{23} \end{equation} From the addition formulas it follows that \begin{align*} \cosh (u+v) + \cosh (u-v) &= 2 \cosh u \cosh v, \\ \cosh (u+v) - \cosh (u-v) &= 2 \sinh u \sinh v, \\ \sinh (u+v) + \sinh (u-v) &= 2 \sinh u \cosh v, \\ \sinh (u+v) - \sinh (u-v) &= 2 \cosh u \sinh v, \end{align*} and then by writing $u + v = u_1$, $u-v = u_2$, $u = \frac{1}{2}(u_1 + u_2)$, $v = \frac{1}{2}(u_1 - u_2)$, these equations take the form required. \small \begin{enumerate} \item[Prob.~20.] In passing to circular functions, show that the only modification to be made in the conversion formulas is in the algebraic sign of the right-hand member of the second formula. \item[Prob.~21.] Simplify $\dfrac{\cosh 2u + \cosh 4v}{\sinh 2u + \sinh 4v}$, $\dfrac{\cosh 2u + \cosh 4v}{\cosh 2u - \cosh 4v}$. \item[Prob.~22.] Prove $\sinh^2 x - \sinh^2 y = \sinh (x+y) \sinh (x-y)$. \item[Prob.~23.] Simplify $\cosh^2 x \cosh^2 y \pm \sinh^2 x \sinh^2 y$. \item[Prob.~24.] Simplify $\cosh^2 x \cos^2 y + \sinh^2 x \sin^2 y$. \end{enumerate} \normalsize \chapter{Limiting Ratios.}\index{Limiting ratios}% \index{Ratios!limiting} To find the limit, as $u$ approaches zero, of \begin{equation*} \frac{\sinh u}{u}, \frac{\tanh u}{u}, \end{equation*} which are then indeterminate in form. By eq.\ (14), $\sinh u > u > \tanh u$; and if $\sinh u$ and $\tanh u$ be successively divided by each term of these inequalities, it follows that \begin{gather*} 1 < \frac{\sinh u}{u} < \cosh u ,\\ \sech u < \frac{\tanh u}{u} <1, \end{gather*} but when $u \doteq 0$, $\cosh u \doteq 1$, $\sech u \doteq 1$, hence \begin{equation} \lim_{u\doteq 0} \frac{\sinh u}{u} = 1, \lim_{u\doteq 0} \frac{\tanh u}{u} = 1. \tag{24} \end{equation} \chapter{Derivatives of Hyperbolic Functions.}% \index{Derived functions}\index{Hyperbolic functions!derivatives of}% \index{Hyperbolic functions!variation of} To prove that \begin{equation} \left. \begin{aligned} (\textit{a}) && \frac{d(\sinh u)}{du} &= \cosh u, \\ (\textit{b}) && \frac{d(\cosh u)}{du} &= \sinh u, \\ (\textit{c}) && \frac{d(\tanh u)}{du} &= \sech^2 u, \\ (\textit{d}) && \frac{d(\sech u)}{du} &= -\sech u\; \tanh u, \\ (\textit{e}) && \frac{d(\coth u)}{du} &= -\csch^2 u, \\ (\textit{f}) && \frac{d(\csch u)}{du} &= -\csch u\; \coth u, \\ \end{aligned} \right\} \tag{25} \end{equation} \begin{enumerate} \item[(a)] Let \begin{align*} y &= \sinh u, \\ \Delta y &= \sinh \left( {u + \Delta u} \right) - \sinh u \\ &= 2\cosh \frac{1}{2}\left( {2u + \Delta u} \right) \sinh \frac{1}{2}\Delta u, \\ \frac{\Delta y}{\Delta u} &= \cosh \left( {u + \frac{1}{2}\Delta u} \right) \frac{\sinh \frac{1}{2}\Delta u}{\frac{1}{2}\Delta u}. \\ \intertext{Take the limit of both sides, as $\Delta u \doteq 0$, and put} \limdot &\frac{\Delta y}{\Delta u} = \frac{dy}{du} = \frac{d\left( {\sinh u} \right)}{du}, \\ \limdot &\cosh \left( {u + \frac{1}{2}\Delta u} \right) = \cosh u, \\ \limdot &\frac{\sinh \frac{1}{2}\Delta u} {\frac{1}{2}\Delta u} = 1; \tag{see Art. 13} \\ \intertext{then } &\frac{d\left( {\sinh u} \right)}{du} = \cosh u. \\ \end{align*} \item[(b)] Similar to (a). \item[(c)] \begin{align*} \frac{d\left( {\tanh u} \right)}{du} &= \frac{d}{du} \cdot \frac{\sinh u}{\cosh u} \\ &= \frac{\cosh ^2 u - \sinh ^2 u}{\cosh ^2 u} = \frac{1}{\cosh ^2 u} = \sech^{2} u. \end{align*} \item[(d)] Similar to (c). \item[(e)] \begin{equation*} \frac{d(\sech u)}{du} = \frac{d}{du} \cdot \frac{1}{\cosh u} = -\frac{\sinh u}{\cosh^2 u} = -\sech u \tanh u. \end{equation*} \item[(f)] Similar to (e). \end{enumerate} It thus appears that the functions $\sinh u, \cosh u$ reproduce themselves in two differentiations; and, similarly, that the circular functions $\sin u, \cos u$ produce their opposites in two differentiations. In this connection it may be noted that the frequent appearance of the hyperbolic (and circular) functions in the solution of physical problems is chiefly due to the fact that they answer the question: What function has its second derivative equal to a positive (or negative) constant multiple of the function itself? (See Probs.\ 28--30.) An answer such as $y = \cosh mx$ is not, however, to be understood as asserting that $mx$ is an actual sectorial measure and $y$ its characteristic ratio; but only that the relation between the numbers $mx$ and $y$ is the same as the known relation between the measure of a hyperbolic sector and its characteristic ratio; and that the numerical value of $y$ could be found from a table of hyperbolic cosines. \small \begin{enumerate} \item[Prob.~25.] Show that for circular functions the only modifications required are in the algebraic signs of (b), (d). \item[Prob.~26.] Show from their derivatives which of the hyperbolic and circular functions diminish as $u$ increases. \item[Prob.~27.] Find the derivative of $\tanh u$ independently of the derivatives of $\sinh u$, $\cosh u$. \item[Prob.~28.] Eliminate the constants by differentiation from the equation \begin{equation*} y = A \cosh mx + B \sinh mx, \end{equation*} and prove that $\dfrac{d^2y}{dx^2} = m^2y.$ \item[Prob.~29.] Eliminate the constants from the equation \begin{equation*} y = A \cos mx + B \sin mx, \end{equation*} and prove that $\dfrac{d^2y}{dx^2} = -m^2y.$% \index{Circular functions}\index{Elimination of constants} \item[Prob.~30.] Write down the most general solutions of the differential equations \begin{equation*} \frac{d^2y}{dx^2} = m^2y, \quad \frac{d^2y}{dx^2} = -m^2y, \quad \frac{d^4y}{dx^4} = m^4y. \end{equation*}\index{Differential equation} \end{enumerate} \normalsize \chapter{Derivatives of Anti-hyperbolic Functions.}% \index{Anti-hyperbolic functions}\index{Derived functions} \begin{equation} \left. \begin{aligned} (\textit{a}) && \frac{d(\sinh^{-1} x)}{dx} &= \frac{1}{\sqrt{x^2+1}}, \\ (\textit{b}) && \frac{d(\cosh^{-1} x)}{dx} &= \frac{1}{\sqrt{x^2-1}}, \\ (\textit{c}) && \frac{d(\tanh^{-1} x)}{dx} &= \left. \frac{1}{1-x^2} \right]_{x<1}, \\ (\textit{d}) && \frac{d(\coth^{-1} x)}{dx} &= \left. \frac{1}{1-x^2} \right]_{x>1}, \\ (\textit{e}) && \frac{d(\sech^{-1} x)}{dx} &= -\frac{1}{x\sqrt{1-x^2}}, \\ (\textit{f}) && \frac{d(\csch^{-1} x)}{dx} &= -\frac{1}{x\sqrt{x^2+1}}, \\ \end{aligned} \right\} \tag{26} \end{equation} \begin{enumerate} \item[(a)] Let $u = \sinh^{-1} x$, then $x = \sinh u$, $dx = \cosh u\,du = \sqrt{1 + \sinh^2 u} = \sqrt{1 + x^2} du$, $du = \dfrac{dx}{\sqrt{1 + x^2}}$. \item[(b)] Similar to (a). \item[(c)] Let $u = \tanh^{-1} x$, then $x = \tanh u$, $dx = \sech^2 u\,du = (1 - \tanh^2 u)du = (1 - x^2)du$, $du = \dfrac{dx}{1 - x^2}$. \item[(d)] Similar to (c). \item[(e)] \begin{equation*} \frac{d(\sech^{-1} x)}{dx} = \frac{d}{dx}\left( \cosh^{-1} \frac{1}{x} \right) = \frac{\frac{-1}{x^2}}{\left( \frac{1}{x^2} - 1 \right)^{\frac{1}{2}}} = \frac{-1}{x\sqrt{1-x^2}}. \end{equation*} \item[(f)] Similar to (e). \end{enumerate} \small \begin{enumerate} \item[Prob. 31.] Prove \begin{align*} \frac{d(\sin^{-1} x)}{dx} &= \frac{1}{\sqrt{1 - x^2}}, & \frac{d(\cos^{-1} x)}{dx} &= -\frac{1}{\sqrt{1 - x^2}}, \\ \frac{d(\tan^{-1} x)}{dx} &= \frac{1}{1 + x^2}, & \frac{d(\cot^{-1} x)}{dx} &= -\frac{1}{1 + x^2} . \end{align*} \item[Prob.~32.] Prove \begin{align*} d\sinh^{-1}\frac{x}a &= \frac{dx}{\sqrt{x^2+a^2}}, & d\cosh^{-1}\frac{x}a &= \frac{dx}{\sqrt{x^2-a^2}}, \\ d\tanh^{-1}\frac{x}a &= \left.\frac{adx}{a^2-x^2}\right]_{xa}. \end{align*} \item[Prob.~33.] Find $d(\sech^{-1} x)$ independently of $\cosh^{-1} x$. \item[Prob.~34.] When $\tanh^{-1} x$ is real, prove that $\coth^{-1} x$ is imaginary, and conversely; except when $x = 1$. \item[Prob.~35.] Evaluate $\dfrac{\sinh^{-1}x}{\log x}$, $\dfrac{\cosh^{-1}x}{\log x}$ when $x = \infty$. \end{enumerate} \normalsize \chapter{Expansion of Hyperbolic Functions.}% \index{Hyperbolic functions!expansions of}\index{Limiting ratios}% \index{Series} For this purpose take Maclaurin's Theorem, \begin{gather*} f(u) = f(0) + uf'(0) + \frac{1}{2!}u^2f''(0) + \frac{1}{3!}u^3f'''(0) + \ldots, \\ \intertext{and put} f(u) = \sinh u,\quad f'(u) = \cosh u,\quad f''(u) = \sinh u, \ldots, \\ \intertext{then} f(0) = \sinh 0 = 0,\quad f'(0) = \cosh 0 = 1, \ldots; \\ \intertext{hence} \sinh u = u + \frac{1}{3!}u^3 + \frac{1}{5!}u^5 + \ldots; \tag{27} \intertext{and similarly, or by differentiation,} \cosh u = 1 + \frac{1}{2!}u^2 + \frac{1}{4!}u^4 + \ldots. \tag{28} \end{gather*}\index{Expansion in series} By means of these series the numerical values of $\sinh u, \cosh u$, can be computed and tabulated for successive values of the independent variable $u$. They are convergent for all values of $u$, because the ratio of the $n$th term to the preceding is in the first case $\dfrac{u^2}{(2n-1)(2n-2)}$, and in the second case $\dfrac{u^2}{(2n-2)(2n-3)}$, both of which ratios can be made less than unity by taking $n$ large enough, no matter what value $u$ has. Lagrange's remainder shows equivalence of function and series.% \index{Convergence} From these series the following can be obtained by division: \begin{equation} \left. \begin{aligned} \tanh u &= u - \frac{1}{3} u^3 + \frac{2}{ 15} u^5 + \frac{17}{ 315} u^7 + \ldots, \\ \sech u &= 1 - \frac{1}{2} u^2 + \frac{5}{ 24} u^4 - \frac{61}{ 720} u^6 + \ldots, \\ u\coth u &= 1 + \frac{1}{3} u^2 - \frac{1}{ 45} u^4 + \frac{ 2}{ 945} u^6 - \ldots, \\ u\csch u &= 1 - \frac{1}{6} u^2 + \frac{7}{360} u^4 - \frac{31}{15120} u^6 + \ldots. \end{aligned} \right\} \tag{29} \end{equation} These four developments are seldom used, as there is no observable law in the coefficients, and as the functions $\tanh u, \sech u, \coth u, \csch u$, can be found directly from the previously computed values of $\cosh u, \sinh u$. \small \begin{enumerate} \item[Prob. 36.] Show that these six developments can be adapted to the circular functions by changing the alternate signs. \end{enumerate} \normalsize \chapter{Exponential Expressions.}\index{Exponential expressions}% \index{Hyperbolic functions!exponential functions for} Adding and subtracting (27), (28) give the identities \begin{gather*} \begin{aligned} \cosh u + \sinh u &= 1 + u + \frac{1}{2!} u^2 + \frac{1}{3!} u^3 + \frac{1}{4!} u^4 + \ldots = e^u, \\ \cosh u - \sinh u &= 1 - u + \frac{1}{2!} u^2 - \frac{1}{3!} u^3 + \frac{1}{4!} u^4 - \ldots = e^{-u}, \end{aligned} \intertext{hence} \left. \begin{aligned} \cosh u &= \tfrac{1}{2}(e^u + e^{-u}), & \sinh u &= \tfrac{1}{2}(e^u - e^{-u}), \\ \tanh u &= \frac{e^u - e^{-u}}{e^u + e^{-u}}, & \sech u &= \frac{2}{e^u + e^{-u}},\quad\text{etc.} \end{aligned} \right\} \tag{30} \end{gather*} The analogous exponential expressions for $\sin u, \cos u$ are \begin{equation*} \cos u = \frac{1}{2} (e^{ui} + e^{-ui}),\quad \sin u = \frac{1}{2i}(e^{u} - e^{-ui}),\quad (i=\sqrt{-1}) \end{equation*} where the symbol $e^{ui}$ stands for the result of substituting $ui$ for $x$ in the exponential development \begin{equation*} e^x = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \ldots \end{equation*}\index{Circular functions} This will be more fully explained in treating of complex numbers, Arts.~28, 29. \subsubsection{} %% RWD Nickalls a hook for the \label below \small \begin{enumerate} \item[Prob.~37.] Show that the properties of the hyperbolic functions could be placed on a purely algebraic basis by starting with equations (30) as their definitions; for example, verify the identities:\label{def hyper as exp} \begin{gather*} \sinh (-u) = -\sinh u,\quad \cosh (-u) = \cosh u,\\ \cosh^2 u - \sinh^2 u = 1,\quad \sinh (u+v) = \sinh u \cosh v + \cosh u \sinh v,\\ \frac{d^2(\cosh mu)}{du^2} = m^2 \cosh mu,\quad \frac{d^2(\sinh mu)}{du^2} = m^2 \sinh mu. \end{gather*} \item[Prob.~38.] Prove $(\cosh u + \sinh u)^n = \cosh nu + \sinh nu$. \item[Prob.~39.] Assuming from Art.~14 that $\cosh u$, $\sinh u$ satisfy the differential equation $\dfrac{d^2y}{du^2} = y$, whose general solution may be written $y = Ae^n + Be^{-n}$, where $A$, $B$ are arbitrary constants; show how to determine $A$, $B$ in order to derive the expressions for $\cosh u$, $\sinh u$, respectively. [Use eq.\ (15).]\index{Differential equation} \item[Prob.~40.] Show how to construct a table of exponential functions from a table of hyperbolic sines and cosines, and \emph{vice versa}. \item[Prob.~41.] Prove $u = \log_e (\cosh u + \sinh u)$. \item[Prob.~42.] Show that the area of any hyperbolic sector is infinite when its terminal line is one of the asymptotes. \item[Prob.~43.] From the relation $2 \cosh u = e^n + e^{-n}$ prove \begin{equation*} 2^{n-1}(\cosh u)^n = \cosh nu + n \cosh (n-2)u + \tfrac{1}{2} n(n-1)\cosh (n-4)u + \ldots, \end{equation*} and examine the last term when $n$ is odd or even. Find also the corresponding expression for $2^{n-1} (\sinh u)^n$. \end{enumerate}\index{Exponential expressions} \normalsize \chapter{Expansion of Anti-functions.}% \index{Anti-hyperbolic functions} Since \begin{gather*} \begin{aligned} \frac{d(\sinh^{-1} x)}{dx} &= \frac{1}{\sqrt{1+x^2}} = (1+x^2)^{-\frac{1}{2}} \\ &= 1 - \frac{1}{2}\cdot x^2 + \frac{1}{2}\cdot\frac{3}{4}\cdot x^4 - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot x^6 + \ldots,\\ \end{aligned} \intertext{hence, by integration,} \sinh^{-1} x = x - \frac{1}{2}\cdot \frac{x^3}{3} + \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{x^5}{5} - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{x^7}{7} + \ldots, \tag{31} \end{gather*} the integration-constant being zero, since $\sinh^{-1} x$ vanishes with $x$. This series is convergent, and can be used in computation, only when $x < 1$. Another series, convergent when $x > 1$, is obtained by writing the above derivative in the form \begin{align*} \frac{d(\sinh^{-1} x)}{dx} &= (x^2+1)^{-\frac{1}{2}} = \frac{1}{x} \left(1 + \frac{1}{x^2}\right)^{-\frac{1}{2}} \\ &= \frac{1}{x} \left[ 1 - \frac{1}{2}\cdot\frac{1}{x^2} + \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{1}{x^4} - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot \frac{1}{x^6} + \dotsb \right], \\ \therefore\; \sinh^{-1} &= C + \log x + \frac{1}{2}\cdot\frac{1}{2x^2} - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{1}{4x^4} + \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{1}{6x^6} - \dotsb, \tag{32} \end{align*} where $C$ is the integration-constant, which will be shown in Art.~19 to be equal to $\log_e 2$.\index{Convergence}% \index{Expansion in series} A development of similar form is obtained for $\cosh^{-1} x$; for \begin{gather*} \begin{aligned} \frac{d(\cosh^{-1} x)}{dx} &= (x^2-1)^{-\frac{1}{2}} = \frac{1}{x}\left(1-\frac{1}{x^2}\right)^{-\frac{1}{2}} \\ &= \frac{1}{x} \left[ 1 + \frac{1}{2}\cdot\frac{1}{x^2} + \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{1}{x^4} + \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{1}{x^6} + \dotsb \right], \end{aligned} \\ \intertext{hence} \cosh^{-1} x = C + \log x - \frac{1}{2}\cdot \frac{1}{2x^2} - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{1}{4x^4} - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot \frac{1}{6x^6} - \dotsb, \tag{33} \end{gather*} in which $C$ is again equal to $\log_e 2$ [Art.~19, Prob.~46]. In order that the function $\cosh^{-1} x$ may be real, $x$ must not be less than unity; but when $x$ exceeds unity, this series is convergent, hence it is always available for computation. Again \begin{align*} \frac{d(\tanh^{-1} x)}{dx} &= \frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + \dotsb, \\ \intertext{and hence} \tanh^{-1} x &= x + \frac{1}{3} x^3 + \frac{1}{5} x^5 + \frac{1}{7} x^7 + \dotsb, \tag{34} \end{align*} From (32), (33), (34) are derived: \begin{align*} \sech^{-1} x &= \cosh^{-1} \frac{1}{x} \\ &= C - \log x - \frac{x^2}{2 \cdot 2} - \frac{1 \cdot 3 \cdot x^4}{2 \cdot 4\cdot 4} - \frac{1 \cdot 3\cdot 5 \cdot x^6} {2 \cdot 4\cdot 6\cdot 6 } - \dotsb; \tag{35} \\ \csch^{-1} x &= \sinh^{-1} \frac{1}{x} = \frac{1}{x} - \frac{1}{2}\cdot\frac{1}{3x^3} + \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{1}{5x^5} - \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{1}{7x^7} + \dotsb, \\ &= C - \log x + \frac{x^2}{2 \cdot 2} - \frac{1 \cdot 3 \cdot x^4} {2 \cdot 4 \cdot 4} + \frac{1 \cdot 3 \cdot 5 \cdot x^6} {2 \cdot 4 \cdot 6 \cdot 6} - \dotsb; \tag{36} \\ \coth^{-1} x &= \tanh^{-1} \frac{1}{x} = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \dotsb. \tag{37} \end{align*} \small \begin{enumerate} \item[Prob.~44.] Show that the series for $\tanh^{-1} x, \coth^{-1} x, \sech^{-1} x$, are always available for computation. \item[Prob.~45.] Show that one or other of the two developments of the inverse hyperbolic cosecant is available. \end{enumerate} \normalsize \chapter{Logarithmic Expression of Anti-Functions.}% \index{Logarithmic!expressions} Let \begin{align*} x &= \cosh u, \\ \intertext{then} \sqrt{x^2 - 1} &= \sinh u; \\ \intertext{therefore} x + \sqrt{x^2 - 1} &= \cosh u + \sinh u = e^u, \\ \intertext{and} u = \cosh^{-1} x &= \log{\left(x + \sqrt{x^2 - 1}\right)}. \tag{38} \\ \intertext{Similarly,} \sinh^{-1} x &= \log{\left(x + \sqrt{x^2 + 1}\right)}. \tag{39} \\ \intertext{Also} \sech^{-1} x &= \cosh^{-1}\frac{1}{x} = \log{\frac{1 + \sqrt{1 - x^2}}{x}}, \tag{40} \\ \csch^{-1} x &= \sinh^{-1}\frac{1}{x} = \log{\frac{1 + \sqrt{1 + x^2}}{x}}. \tag{41} \\ \intertext{Again, let} x &= \tanh u = \frac{e^u - e^{-u}}{e^u + e^{-u}}, \\ \intertext{therefore} \frac{1 + x}{1 - x} &= \frac{e^u}{e^{-u}} = e^{2u}, \\ 2u &= \log{\frac{1 + x}{1 - x}}, \quad \tanh^{-1} = \tfrac{1}{2}\log{\frac{1 + x}{1 - x}}; \tag{42} \\ \intertext{and} \coth^{-1} x &= \tanh^{-1} \frac{1}{x} = \tfrac{1}{2}\log{\frac{x + 1}{x - 1}}. \tag{43} \end{align*} \small \begin{enumerate} \item[Prob.~46.] Show from (38), (39), that, when $x \doteq \infty$, \begin{equation*} \sinh^{-1} x - \log x \doteq \log 2,\qquad \cosh^{-1} x - \log x \doteq \log 2, \end{equation*} and hence show that the integration-constants in (32), (33) are each equal to $\log 2$. \item[Prob.~47.] Derive from (42) the series for $\tanh^{-1}x$ given in (34). \item[Prob.~48.] Prove the identities: \begin{align*} & \log x = 2\tanh^{-1} \frac{x - 1}{x + 1} = \tanh^{-1} \frac{x^2 - 1}{x^2 + 1} = \sinh^{-1} \tfrac{1}{2} (x - x^{-1}) = \cosh^{-1} \tfrac{1}{2} (x + x^{-1}); \\ & \log\sec x = 2\tanh^{-1} \tfrac{1}{2} x;\ \log\csc x = 2\tanh^{-1} \tan^2\left(\frac{1}{4}\pi + \frac{1}{2}x\right); \\ & \log\tan x = -\tanh^{-1} \cos 2x = -\sinh^{-1} \cot 2x = \cosh^{-1} \csc 2x. \end{align*} \end{enumerate} \normalsize \chapter{The Gudermanian Function.} \label{gudermanian}% \index{Gudermanian!function} The correspondence of sectors of the same species was discussed in Arts.~1--4. It is now convenient to treat of the correspondence that may exist between sectors of different species. Two points $P_1, P_2$, on any hyperbola and ellipse, are said to correspond with reference to two pairs of conjugates $O_1 A_1, O_1 B_1$, and $O_2 A_2, O_2 B_2$, respectively, when \begin{equation} \frac{x_1}{a_1} = \frac{a_2}{x_2} ,\tag{44} \end{equation} and when $y_1, y_2$ have the same sign. The sectors $A_1 O_1 P_1, A_2 O_2 P_2$ are then also said to correspond. Thus corresponding sectors of central conics of different species are of the same sign and have their primary characteristic ratios reciprocal. Hence there is a fixed functional relation between their respective measures. The elliptic sectorial measure is called the gudermanian of the corresponding hyperbolic sectorial measure, and the latter the anti-gudermanian of the former. This relation is expressed by \begin{gather*} \frac{S_2}{K_2} = \gd \frac{S_1}{K_1} \\ \text{or } v = \gd u, \text{ and } u = \gd^{-1} v. \tag{45} \end{gather*}% \index{Anti-gudermanian}\index{Corresponding points!on conics}% \index{Corresponding points!on sectors and triangles}% \index{Sectors of conics} \chapter{Circular Functions of Gudermanian.}% \index{Circular functions!of gudermanian}% \index{Hyperbolic functions!relations to circular functions} The six hyperbolic functions of $u$ are expressible in terms of the six circular functions of its gudermanian; for since \begin{equation} \frac{x_1}{a_1} = \cosh u, \quad \frac{x_2}{a_2} = \cosh v, \tag{see Arts.\ 6, 7} \end{equation} in which $u, v$ are the measures of corresponding hyperbolic and elliptic sectors, hence \begin{equation} \left. \begin{aligned} \cosh u &= \sec v, \qquad [\text{eq.\ (44)}] \\ \sinh u &= \sqrt{\sec^2 v - 1} = \tan v, \\ \tanh u &= \frac{\tan v}{\sec v} = \sin v, \\ \coth u &= \csc v, \\ \sech u &= \cos v, \\ \csch u &= \cot v. \\ \end{aligned} \right\}\tag{46} \end{equation} The gudermanian is sometimes useful in computation; for instance, if $\sinh u$ be given, $v$ can be found from a table of natural tangents, and the other circular functions of $v$ will give the remaining hyperbolic functions of $u$. Other uses of this function are given in Arts.\ 22--26, 32--36.\index{Relations among functions} \small \begin{enumerate} \item[Prob.~49.] Prove that \begin{align*} \gd u &= \sec^{-1} (\cosh u) = \tan^{-1} (\sinh u) \\ &= \cos^{-1} (\sech u) = \sin^{-1} (\tanh u). \end{align*}% \index{Anti-hyperbolic functions}\index{Circular functions} \item[Prob.~50.] Prove \begin{align*} \gd^{-1} v &= \cosh^{-1} (\sec v) = \sinh^{-1} (\tan v) \\ &= \sech^{-1} (\cos v) = \tanh^{-1} (\sin v). \end{align*} \item[Prob.~51.] Prove \begin{align*} \gd 0 &= 0, \; \gd \infty = \tfrac{1}{2}\pi,\ \gd (-\infty) = -\tfrac{1}{2}\pi, \\ \gd^{-1} 0 &= 0, \; \gd^{-1}\left( \tfrac{1}{2}\pi\right) = \infty, \; \gd^{-1}\left(-\tfrac{1}{2}\pi\right) = -\infty. \end{align*} \item[Prob.~52.] Show that $\gd u$ and $\gd^{-1} v$ are odd functions of $u, v$. \item[Prob.~53.] From the first identity in 4, Prob.~17, derive the relation $\tanh \frac{1}{2} u = \tan \frac{1}{2} v$. \item[Prob.~54.] Prove $\tanh^{-1} (\tan u) = \tfrac{1}{2} \gd 2u,$ and $\tan^{-1} (\tanh x) = \tfrac{1}{2} \gd^{-1} 2x.$ \end{enumerate} \normalsize \chapter{Gudermanian Angle}\index{Gudermanian!angle}% \index{Hyperbolic functions!relations to gudermanian} If a circle be used instead of the ellipse of Art.~20, the gudermanian of the hyperbolic sectorial measure will be equal to the radian measure of the angle of the corresponding circular sector (see eq.~(6), and Art.~3, Prob.~2). This angle will be called the gudermanian angle; but the gudermanian function $v$, as above defined, is merely a number, or ratio; and this number is equal to the radian measure of the gudermanian angle $\theta$, which is itself usually tabulated in degree measure; thus \begin{equation} \theta = \frac{180^\circ v}{\pi} \tag{47} \end{equation} \small \begin{enumerate} \item[Prob.~55.] Show that the gudermanian angle of $u$ may be constructed as follows: \begin{center} \includegraphics[width=35mm]{fig06.png} \end{center} Take the principal radius $OA$ of an equilateral hyperbola, as the initial line, and $OP$ as the terminal line, of the sector whose measure is $u$; from $M$, the foot of the ordinate of $P$, draw $MT$ tangent to the circle whose diameter is the transverse axis; then $AOT$ is the angle required.% \footnote{This angle was called by Gudermann the longitude of $u$, and denoted by $lu$. His inverse symbol was $\textgoth{L}$; thus $u = \textgoth{L}(lu)$. (Crelle's Journal, vol.~6, 1830.) Lambert, who introduced the angle $\theta$, named it the transcendent angle. (Hist.\ de l'acad.\ roy.\ de Berlin, 1761). Hoüel (Nouvelles Annales, vol.~3, 1864) called it the hyperbolic amplitude of $u$, and wrote it $\amh{u}$, in analogy with the amplitude of an elliptic function, as shown in Prob.~62. Cayley (Elliptic Functions, 1876) made the usage uniform by attaching to the angle the name of the mathematician who had used it extensively in tabulation and in the theory of elliptic functions of modulus unity.}% \index{Cayley's Elliptic Functions}% \index{Construction!for gudermanian}\index{Gudermann's notation}% \index{Hoüel's notation, etc.}\index{Hyperbola}% \index{Lambert's!notation}\index{Modulus} \item[Prob.~56.] Show that the angle $\theta$ never exceeds $90^{\circ}$. \item[Prob.~57.] The bisector of angle $AOT$ bisects the sector $AOP$ (see Prob.~13, Art.~9, and Prob.~53, Art.~21), and the line $AP$. (See Prob.~1, Art.~3.) \item[Prob.~58.] This bisector is parallel to $TP$, and the points $T$, $P$ are in line with the point diametrically opposite to $A$. \item[Prob.~59.] The tangent at $P$ passes through the foot of the ordinate of $T$, and intersects $TM$ on the tangent at $A$. \item[Prob.~60.] The angle $APM$ is half the gudermanian angle. \end{enumerate} \normalsize \chapter{Derivatives of Gudermanian and Inverse.}% \index{Derived functions} Let \begin{align*} v & = \gd{u}, \quad u = \gd^{-1}{v}, \\ \intertext{then} \sec{v} & = \cosh{u}, \\ \sec{v}\tan{v} \,dv & = \sinh{u} \,du, \\ \sec{v} \,dv & = du, \\ \intertext{therefore} d(\gd^{-1}{v}) & = \sec{v} \,dv. \tag{48} \\ \intertext{\qquad Again,} dv & = \cos{v} \,du = \sech{u} \,du, \\ \intertext{therefore} d(\gd{u}) & = \sech{u} \,du. \tag{49} \end{align*}% \index{Anti-gudermanian} \small \begin{enumerate} \item[Prob.~61.] Differentiate: \begin{align*} y & = \sinh{u} - \gd{u}, & y & = \sin{v} + \gd^{-1}{v}, \\ y & = \tanh{u}\sech{u} + \gd{u}, & y & = \tan{v}\sec{v} + \gd^{-1}{v}. \end{align*} \item[Prob.~62.] Writing the ``elliptic integral of the first kind'' in the form \begin{equation*} u = \int_0^\phi \frac{d\phi}{\sqrt{1 - \kappa^2\sin^2\phi}}, \end{equation*} $\kappa$ being called the modulus, and $\phi$ the amplitude; that is, \begin{equation*} \phi = \am u, (\moddot \kappa), \end{equation*} show that, in the special case when $\kappa = 1$, \begin{align*} u &= \gd^{-1} \phi, & \am u &= \gd u, & \sin \am u &= \tanh u, \\ \cos \am u &= \sech u, & \tan \am u &= \sinh u; \end{align*} and that thus the elliptic functions $\sin \am u$, etc., degenerate into the hyperbolic functions, when the modulus is unity.% \footnote{The relation $\gd u = \am u, (\moddot 1)$, led Hoüel to name the function $\gd u$, the hyperbolic amplitude of $u$, and to write it $\amh u$ (see note, Art.~22). In this connection Cayley expressed the functions $\tanh u$, $\sech u$, $\sinh u$ in the form $\sin \gd u$, $\cos \gd u$, $\tan \gd u$, and wrote them $\sg u$, $\cg u$, $\tg u$, to correspond with the abbreviations $\sn u$, $\cn u$, $\dn u$ for $\sin \am u$, $\cos \am u$, $\tan \am u$. Thus $\tanh u = \sg u = \sn u, (\moddot 1)$; etc.\index{Modulus} \indent It is well to note that neither the elliptic nor the hyperbolic functions received their names on account of the relation existing between them in a special case. (See foot-note, p.~\ref{fnp7})}% \index{Amplitude!hyperbolic}\index{Cayley's Elliptic Functions}% \index{Elliptic functions}\index{Elliptic integrals}% \index{Elliptic sectors}\index{Hoüel's notation, etc.} \end{enumerate} \normalsize \chapter{Series for Gudermanian and its Inverse.}% \index{Gudermanian!function}\index{Series} Substitute for $\sech u, \sec v$ in (49), (48) their expansions, Art.~16, and integrate, then \begin{align*} \gd u &= u - \frac{1}{6} u^3 + \frac{1}{24} u^5 - \frac{61}{5040} u^7 + \dotsb \tag{50} \\ \gd^{-1} v &= v + \frac{1}{6} v^3 + \frac{1}{24} v^5 - \frac{61}{5040} v^7 + \dotsb \tag{51} \end{align*} No constants of integration appear, since $\gd u$ vanishes with $u$, and $\gd^{-1} v$ with $v$. These series are seldom used in computation, as $\gd u$ is best found and tabulated by means of tables of natural tangents and hyperbolic sines, from the equation \begin{equation*} \gd u = \tan^{-1}(\sinh u), \end{equation*} and a table of the direct function can be used to furnish the numerical values of the inverse function; or the latter can be obtained from the equation, \begin{equation*} \gd^{-1} v = \sinh^{-1}(\tan v) = \cosh^{-1}(\sec v). \end{equation*}\index{Expansion in series} To obtain a logarithmic expression for $\gd^{-1} v$, let \begin{align*} \gd^{-1} v &= u,\quad v = \gd u, \\ \intertext{therefore} \sec v &= \cosh u,\quad \tan v = \sinh u, \\ \sec v + \tan v &= \cosh u + \sinh u = e^u, \\ e^u = \frac{1 + \sin v}{\cos v} &= \frac{1-\cos(\frac{1}{2}\pi + v)}{\sin(\frac{1}{2}\pi + v)} = \tan\left(\frac{1}{4}\pi + \frac{1}{2}v\right), \\ u = \gd^{-1} v &= \log_e\tan\left(\frac{1}{4}\pi + \frac{1}{2}v\right). \tag{52} \end{align*} \small \begin{enumerate} \item[Prob.~63.] Evaluate $\left.\dfrac{\gd u - u}{u^3}\right]_{u\doteq 0}$, $\left.\dfrac{\gd^{-1} v - v}{v^3}\right]_{v\doteq 0}$.\index{Limiting ratios} \item[Prob.~64.] Prove that $\gd u - \sin u$ is an infinitesimal of the fifth order, when $u \doteq 0$.\index{Logarithmic!expressions} \item[Prob.~65.] Prove the relations $\frac{1}{4}\pi + \frac{1}{2} v \tan^{-1}e^u$, $\frac{1}{4}\pi - \frac{1}{2} v = \tan^{-1}e^{-u}$. \end{enumerate} \normalsize \chapter{Graphs of Hyperbolic Functions.}% \index{Construction!of graphs}\index{Graphs}% \index{Hyperbolic functions!graphs of} \begin{figure*}[p] \begin{center} \includegraphics[width=60mm]{fig07.png} \\ \includegraphics[width=50mm]{fig08.png} \includegraphics[width=50mm]{fig09.png} \\ \includegraphics[width=100mm]{fig10.png} \end{center} \end{figure*} Drawing two rectangular axes, and laying down a series of points whose abscissas represent, on any convenient scale, successive values of the sectorial measure, and whose ordinates represent, preferably on the same scale, the corresponding values of the function to be plotted, the locus traced out by this series of points will be a graphical representation of the variation of the function as the sectorial measure varies. The equations of the curves in the ordinary cartesian notation are: \medskip \begin{center} \begin{tabular}{l l l} \multicolumn{1}{c}{Fig.} & \multicolumn{1}{c}{Full Lines.} & \multicolumn{1}{c}{Dotted Lines.} \\ A & $y = \cosh x,$ & $y = \sech x;$ \\ B & $y = \sinh x,$ & $y = \csch x;$ \\ C & $y = \tanh x,$ & $y = \coth x;$ \\ D & $y = \gd x.$ & \end{tabular} \end{center} Here $x$ is written for the sectorial measure $u$, and $y$ for the numerical value of $\cosh u$, etc. It is thus to be noted that the variables $x$, $y$ are numbers, or ratios, and that the equation $y = \cosh x$ merely expresses that the relation between the numbers $x$ and $y$ is taken to be the same as the relation between a sectorial measure and its characteristic ratio. The numerical values of $\cosh u, \sinh u, \tanh u$ are given in the tables at the end of this chapter for values of $u$ between $0$ and $4$. For greater values they may be computed from the developments of Art.~16. The curves exhibit graphically the relations: \begin{gather*} \sech u = \frac{1}{\cosh u}, \quad \csch u = \frac{1}{\sinh u}, \quad \coth u = \frac{1}{\tanh u}; \\ \cosh u \nless 1, \quad \sech u \ngtr 1, \quad \tanh u \ngtr 1, \quad \gd u < \tfrac{1}{2}\pi, \text{ etc.}; \\ \sinh(-u) = -\sinh u, \quad \cosh(-u) = \cosh u, \\ \tanh(-u) = -\tanh u, \quad \gd(-u) = -\gd u, \text{ etc.}; \\ \cosh 0 = 1, \quad \sinh 0 = 0, \quad \tanh 0 = 0, \quad \csch(0) = \infty, \text{ etc.}; \\ \cosh(\pm\infty) = \infty, \quad \sinh(\pm\infty) = \pm\infty, \quad \tanh(\pm\infty) = \pm 1, \text{ etc.} \end{gather*} The slope of the curve $y = \sinh x$ is given by the equation $\dfrac{dy}{dx} = \cosh x$, showing that it is always positive, and that the curve becomes more nearly vertical as $x$ becomes infinite. Its direction of curvature is obtained from $\dfrac{d^2y}{dx^2} = \sinh x$, proving that the curve is concave downward when $x$ is negative, and upward when $x$ is positive. The point of inflexion is at the origin, and the inflexional tangent bisects the angle between the axes. The direction of curvature of the locus $y = \sech x$ is given by $\dfrac{d^2y}{dx^2}=$ $\sech x (2 \tanh^2 x - 1)$, and thus the curve is concave downwards or upwards according as $2 \tanh^2 x - 1$ is negative or positive. The inflexions occur at the points $x = \pm \tanh^{-1} .707, = \pm .881$, $y =.707$; and the slopes of the inflexional tangents are $\mp\frac{1}{2}$. The curve $y = \csch x$ is asymptotic to both axes, but approaches the axis of $x$ more rapidly than it approaches the axis of $y$, for when $x = 3$, $y$ is only $.1$, but it is not till $y = 10$ that $x$ is so small as $.1$. The curves $y = \csch x$, $y = \sinh x$ cross at the points $x = \pm .881$, $y = \pm 1$. \small \begin{enumerate} \item[Prob.~66.] Find the direction of curvature, the inflexional tangent, and the asymptotes of the curves $y = \gd x$, $y = \tanh x$.\index{Gudermanian!function} \item[Prob.~67.] Show that there is no inflexion-point on the curves $y = \cosh x$, $y = \coth x$. \item[Prob.~68.] Show that any line $y = mx + n$ meets the curve $y = \tanh x$ in either three real points or one. Hence prove that the equation $\tanh x = mx + n$ has either three real roots or one. From the figure give an approximate solution of the equation $\tanh x = x - 1$. \item[Prob.~69.] Solve the equations: $\cosh x = x + 2$; $\sinh x = \frac{3}{2} x$; $\gd x = x - \frac{1}{2}\pi$. \item[Prob.~70.] Show which of the graphs represent even functions, and which of them represent odd ones. \end{enumerate} \normalsize \chapter{Elementary Integrals.}% \index{Anti-hyperbolic functions}\index{Circular functions}% \index{Equations!Numerical}% \index{Hyperbolic functions!integrals involving}\index{Integrals} The following useful indefinite integrals follow from Arts. 14, 15, 23: \newcommand{\dint}{\displaystyle\int} \medskip\begin{tabular}{rll} & \multicolumn{1}{c}{Hyperbolic.} & \multicolumn{1}{c}{Circular.} \\ 1. & $\dint \sinh u\: du = \cosh u,$ & $\dint \sin u\: du = -\cos u,$ \\ 2. & $\dint \cosh u\: du = \sinh u,$ & $\dint \cos u\: du = \sin u,$ \\ 3. & $\dint \tanh u\: du = \log \cosh u,$ & $\dint \tan u\: du = -\log \cos u,$ \\ 4. & $\dint \coth u\: du = \log \sinh u,$ & $\dint \cot u\: du = \log \sin u,$ \\ 5. & $\dint \csch u\: du = \log \tanh \frac{u}{2},$ & $\dint \csc u\: du = \log \tan\dfrac{u}2,$ \\ & $\qquad = -\sinh^{-1}(\csch u),$ & $\qquad = -\cosh^{-1}(\csch u),$ \\ 6. & $\dint \sech u\: du = \gd u,$ & $\dint \sec u\: du = \gd^{-1} u,$ \\ 7. & $\dint \frac{dx}{\sqrt{x^2+a^2}} = \sinh^{-1}\frac{x}{a},$\footnotemark & $\dint \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a},$ \\ 8. & $\dint \frac{dx}{\sqrt{x^2-a^2}} = \cosh^{-1}\frac{x}{a},$ & $\dint \frac{-dx}{\sqrt{a^2-x^2}} = \cos^{-1}\frac{x}{a},$ \\ 9. & $\dint \left.\frac{dx}{a^2-x^2}\right]_{xa} = \frac{1}{a}\coth^{-1} \frac{x}{a},$ & $\dint \frac{-dx}{a^2+x^2} = \frac{1}{a}\cot^{-1}\frac{x}{a},$\\ 11. & $\dint \frac{-dx}{x\sqrt{a^2-x^2}} = \frac{1}{a}\sech^{-1}\frac{x}a,$ & $\dint \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a}\sec^{-1}\frac{x}{a},$ \\ 12. & $\dint \frac{-dx}{x\sqrt{a^2+x^2}} = \frac{1}{a}\csch^{-1} \frac{x}{a},$ & $\dint \frac{-dx}{x\sqrt{x^2-a^2}} = \frac{1}{a}\csc^{-1}\frac{x}{a}.$ \end{tabular} \footnotetext{Forms 7--12 are preferable to the respective logarithmic expressions (Art.~19), on account of the close analogy with the circular forms, and also because they involve functions that are directly tabulated. This advantage appears more clearly in 13--20.} From these fundamental integrals the following may be derived: \begin{equation*} \begin{aligned} 13.\quad \int\frac{dx}{\sqrt{ax^2+2bx+c}} &= \frac{1}{\sqrt{a}}\sinh^{-1} \frac{ax+b}{\sqrt{ac-b^2}},\ a \text{ positive, } ac > b^2;\\ &= \frac{1}{\sqrt{a}}\cosh^{-1} \frac{ax+b}{\sqrt{b^2-ac}},\ a \text{ positive, } ac < b^2;\\ &= \frac{1}{\sqrt{-a}}\cos^{-1} \frac{ax+b}{\sqrt{b^2-ac}},\ a \text{ negative}. \end{aligned} \end{equation*} \begin{equation*} \begin{aligned} 14.\quad \int\frac{dx}{ax^2+2bx+c} &= \frac{1}{\sqrt{ac-b^2}}\tan^{-1}\frac{ax+b}{\sqrt{ac-b^2}},\ ac > b^2; \\ &= \frac{-1}{\sqrt{b^2-ac}}\tanh^{-1} \frac{ax+b}{\sqrt{b^2-ac}},\ ac < b^2, ax+b < \sqrt{b^2-ac};\\ &= \frac{-1}{\sqrt{b^2-ac}}\coth^{-1} \frac{ax+b}{\sqrt{b^2-ac}},\ ac < b^2, ax+b > \sqrt{b^2-ac}; \end{aligned} \end{equation*} Thus, \begin{align*} \int_4^5 \frac{dx}{x^2-4x+3} &= \left.-\coth^{-1}(x-2)\right]_4^5 = \coth^{-1}2 -\coth^{-1}3 \\ &= \tanh^{-1}(.5) - \tanh^{-1}(.3333) = .5494 - .3466 = .2028.\footnotemark \\ \int_2^{2.5} \frac{dx}{x^2-4x+3} &= \left.-\tanh^{-1}(x-2)\right]_2^{2.5} = \tanh^{-1}0 - \tanh^{-1}(0.5) =-.5494. \end{align*} \footnotetext{For $\tanh^{-1}(.5)$ interpolate between $\tanh (.54) = .4930$, $\tanh (.56) =.5080$ (see tables, pp.~\pageref{Table1p1}, \pageref{Table1p2}); and similarly for $\tanh^{-1}(.3333)$.}% \index{Interpolation} (By interpreting these two integrals as areas, show graphically that the first is positive, and the second negative.)% \index{Areas} \begin{align*} 15.\quad \int \frac{dx}{(a-x)\sqrt{x-b}} &= \frac{2}{\sqrt{a-b}}\tanh^{-1}\sqrt{\frac{x-b}{a-b}}, \\ &\text{or } \frac{-2}{\sqrt{b-a}}\tan^{-1}\sqrt{\frac{x-b}{b-a}}, \\ &\text{or } \frac{2}{\sqrt{a-b}}\coth^{-1}\sqrt{\frac{x-b}{a-b}}; \end{align*} the real form to be taken. (Put $x - b = z^2$, and apply 9, 10.) \begin{align*} 16.\quad \int\frac{dx}{(a-x)\sqrt{b-x}} &= \frac{2}{\sqrt{b-a}}\tanh^{-1}\sqrt{\frac{b-x}{b-a}}, \\ &\text{or }\frac{2}{\sqrt{b-a}}\coth^{-1}\sqrt{\frac{b-x}{b-a}}, \\ &\text{or } \frac{-2}{\sqrt{a-b}}\tan^{-1}\sqrt{\frac{b-x}{a-b}}; \end{align*} the real form to be taken. \begin{equation*} 17.\quad \int(x^2-a^2)^{\frac{1}{2}}dx = \frac{1}{2}x(x^2-a^2)^{\frac{1}{2}} - \frac{1}{2}a^2\cosh^{-1}\frac{x}{a}. \end{equation*} By means of a reduction-formula this integral is easily made to depend on 8. It may also be obtained by transforming the expression into hyperbolic functions by the assumption $x = a\cosh u$, when the integral takes the form \begin{align*} a^2\int\sinh^2u\,du = \frac{a^2}{2}\int(\cosh 2u-1)du &= \frac{1}{4}a^2(\sinh 2u-2u) \\ &= \frac{1}{2}a^2(\sinh u\cosh u-u), \end{align*} which gives 17 on replacing $a\cosh u$ by $x$, and $a\sinh u$ by $(x^2-a^2)^{\frac{1}{2}}$. The geometrical interpretation of the result is evident, as it expresses that the area of a rectangular-hyperbolic segment $AMP$ is the difference between a triangle $OMP$ and a sector $OAP$.% \index{Areas}\index{Geometrical interpretation}\index{Hyperbola}% \index{Reduction formula} \begin{align*} 18.\quad \int(a^2-x^2)^{\frac{1}{2}}dx &= \frac{1}{2}x(a^2-x^2)^{\frac{1}{2}} + \frac{1}{2}a^2\sin^{-1}\frac{x}{a}.\\ 19.\quad \int(x^2+a^2)^{\frac{1}{2}} dx &= \frac{1}{2}x(x^2-a^2)^{\frac{1}{2}} + \frac{1}{2}a^2\sinh^{-1}\frac{x}{a}.\\ 20.\quad \int\sec^3\phi\,d\phi &= \int(1+\tan^2\phi)^{\frac{1}{2}}d\tan\phi\\ &= \frac{1}{2}\tan\phi(1+\tan^2\phi)^{\frac{1}{2}} +\frac{1}{2}\sinh^{-1}(\tan\phi) \\ &= \frac{1}{2}\sec\phi\tan\phi + \frac{1}{2}\gd^{-1}\phi. \\ 21.\quad \int\sech^3u\,du &= \frac{1}{2}\sech u\tanh u + \frac{1}{2}\gd u. \end{align*} \small \begin{enumerate} \item[Prob.~71.] What is the geometrical interpretation of 18, 19? \item[Prob.~72.] Show that $\int(ax^2+2bx+c)^{\frac{1}{2}}dx$ reduces to 17, 18, 19, respectively: when $a$ is positive, with $ac < b^2$; when $a$ is negative; and when $a$ is positive, with $ac > b^2$. \item[Prob.~73.] Prove \begin{align*} \int\sinh u\tanh u\,du &= \sinh u - \gd u,\\ \int\cosh u\coth u\,du &= \cosh u + \log\tanh\frac{u}{2}. \end{align*} \item[Prob.~74.] Integrate $(x^2+2x+5)^{-\frac{1}{2}}dx$, $(x^2+2x+5)^{-1}dx$, $(x^2+2x+5)^{\frac{1}{2}}dx$. \item[Prob.~75.] In the parabola $y^2 = 4px$, if $s$ be the length of arc measured from the vertex, and $\phi$ the angle which the tangent line makes with the vertical tangent, prove that the intrinsic equation of the curve is $\dfrac{ds}{d\phi} = 2p\sec^3\phi$, $s = p\sec\phi\tan\phi + p\gd^{-1}\phi$.\index{Intrinsic equation}% \index{Parabola} \item[Prob.~76.] The polar equation of a parabola being $r = a\sec^2\theta$, referred to its focus as pole, express $s$ in terms of $\theta$. \item[Prob.~77.] Find the intrinsic equation of the curve $\dfrac{y}{a} = \cosh \dfrac{x}{a}$, and of the curve $\dfrac{y}{a} = \log\sec\dfrac{x}{a}$. \item[Prob.~78.] Investigate a formula of reduction for $\dint\cosh^nx\,dx$; also integrate by parts \\ $\cosh^{-1}x\,dx$, $\tanh^{-1}x\,dx$, $(\sinh^{-1}x)^2dx$; and show that the ordinary methods of reduction for $\dint\cos^mx\sin^nx\,dx$ can be applied to $\dint\cosh^mx\sinh^nx\,dx$.\index{Reduction formula} \end{enumerate}\normalsize \chapter{Functions of Complex Numbers.}% \index{Complex numbers|(}\index{Function!of complex numbers}% \index{Hyperbolic functions!of complex numbers|(}% \index{Numbers, complex|(} As vector quantities are of frequent occurrence in Mathematical Physics; and as the numerical measure of a vector in terms of a standard vector is a complex number of the form $x+iy$, in which $x, y$ are real, and $i$ stands for $\sqrt{-1}$; it becomes necessary in treating of any class of functional operations to consider the meaning of these operations when performed on such generalized numbers.\footnote{% The use of vectors in electrical theory is shown in Bedell and Crehore's Alternating Currents, Chaps, XIV--XX (first published in 1892). The advantage of introducing the complex measures of such vectors into the differential equations is shown by Steinmetz, Proc. Elec. Congress, 1893; while the additional convenience of expressing the solution in hyperbolic functions of these complex numbers is exemplified by Kennelly, Proc. American Institute Electrical Engineers, April 1895. (See below, Art.~37.)}% \index{Alternating currents}% \index{Bedel and Crehore's alternating currents}% \index{Kennelly on alternating currents}% \index{Steinmetz on alternating currents}\index{Vectors} The geometrical definitions of $\cosh u$, $\sinh u$, given in Art.~7, being then no longer applicable, it is necessary to assign to each of the symbols $\cosh(x+iy)$, $\sinh(x+iy)$, a suitable algebraic meaning, which should be consistent with the known algebraic values of $\cosh x$, $\sinh x$, and include these values as a particular case when $y = 0$. The meanings assigned should also, if possible, be such as to permit the addition-formulas of Art.~11 to be made general, with all the consequences that flow from them. Such definitions are furnished by the algebraic developments in Art.~16, which are convergent for all values of $u$, real or complex. Thus the definitions of $\cosh(x+iy)$, $\sinh(x+iy)$ are to be \begin{equation*} \left. \begin{aligned} \cosh(x+iy) &= 1 + \frac{1}{2!}(x+iy)^2 + \frac{1}{4!}(x+iy)^4 + \dots,\\ \sinh(x+iy) & = (x+iy) + \frac{1}{3!}(x+iy)^3 + \dots \end{aligned} \right\}\tag{52} \end{equation*} From these series the numerical values of $\cosh(x+iy)$, $\sinh(x+iy)$ could be computed to any degree of approximation, when $x$ and $y$ are given. In general the results will come out in the complex form\footnote{% It is to be borne in mind that the symbols cosh, sinh, here stand for algebraic operators which convert one number into another; or which, in the language of vector-analysis, change one vector into another, by stretching and turning.} \begin{align*} \cosh(x+iy) &= a+ib,\\ \sinh(x+iy) &= c+id. \end{align*} The other functions are defined as in Art.~7, eq.~(9). \small \begin{enumerate} \item[Prob.~79.] Prove from these definitions that, whatever $u$ may be, \begin{align*} \cosh(-u) &= \cosh u, & \sinh(-u) &= -\sinh u, \\ \frac{d}{du} \cosh u &= \sinh u, & \frac{d}{du} \sinh u &= \cosh u,\\ \frac{d^2}{du^2} \cosh mu &= m^2\cosh mu, & \frac{d^2}{du^2} \sinh mu &= m^2\sinh mu.\footnotemark \end{align*} \footnotetext{The generalized hyperbolic functions usually present themselves in Mathematical Physics as the solution of the differential equation $\dfrac{d^2\phi}{du^2} = m^2\phi$, where $\phi$, $m$, $u$ are complex numbers, the measures of vector quantities. (See Art.~37.)}\index{Operators, generalized}% \index{Permanence of equivalence} \end{enumerate}\index{Circular functions}\normalsize \chapter{Addition-Theorems for Complexes.}% \index{Addition-theorems} The addition-theorems for $\cosh(u+v)$, etc., where $u$, $v$ are complex numbers, may be derived as follows. First take $u$, $v$ as real numbers, then, by Art.~11, \begin{align*} \cosh(u+v) &= \cosh u \cosh v + \sinh u\ \sinh v; \\ \intertext{hence} 1 + \frac{1}{2!}(u+v)^2+ \dots &= \left(1+\frac{1}{2!}u^2+\dots\right) \left(1+\frac{1}{2!}v^2+\dots\right) \\ &\quad + \left(u+\frac{1}{3!}u^3+\dots\right) \left(v+\frac{1}{3!}v^3+\dots\right) \end{align*} This equation is true when $u$, $v$ are any real numbers. It must, then, be an algebraic identity. For, compare the terms of the $r$th degree in the letters $u, v$ on each side. Those on the left are $\dfrac{1}{r!}(u+v)^r$; and those on the right, when collected, form an $r$th-degree function which is numerically equal to the former for more than $r$ values of $u$ when $v$ is constant, and for more than $r$ values of $v$ when $u$ is constant. Hence the terms of the $r$th degree on each side are algebraically identical functions of $u$ and $v$.\footnote{% ``If two $r$th-degree functions of a single variable be equal for more than $r$ values of the variable, then they are equal for all values of the variable, and are algebraically identical.''} Similarly for the terms of any other degree. Thus the equation above written is an algebraic identity, and is true for all values of $u$, $v$, whether real or complex. Then writing for each side its symbol, it follows that \begin{align*} \cosh(u+v) &= \cosh u \cosh v + \sinh u \sinh v;\tag{53} \\ \intertext{and by changing $v$ into $-v$,} \cosh(u-v) &= \cosh u \cosh v - \sinh u \sinh v.\tag{54} \end{align*} In a similar manner is found \begin{equation} \sinh(u\pm v) = \sinh u \cosh v \pm \cosh u \sinh v.\tag{55} \end{equation} In particular, for a complex argument, \begin{equation} \left. \begin{aligned} \cosh(x\pm iy) &= \cosh x \cosh iy \pm \sinh x \sinh iy,\\ \sinh(x\pm iy) &= \sinh x \cosh iy \pm \cosh x \sinh iy. \end{aligned} \right\}\tag{56} \end{equation} \small \begin{enumerate} \item[Prob.~79.] Show, by a similar process of generalization,% \footnote{This method of generalization is sometimes called the principle of the ``permanence of equivalence of forms.'' It is not, however, strictly speaking, a ``principle,'' but a method; for, the validity of the generalization has to be demonstrated, for any particular form, by means of the principle of the algebraic identity of polynomials enunciated in the preceding foot-note. (See Annals of Mathematics, Vol.~6, p.~81.)} that if $\sin u$, $\cos u$, $\exp u$% \footnote{The symbol $\exp u$ stands for ``exponential function of u,'' which is identical with $e^u$ when $u$ is real.} be defined by their developments in powers of $u$, then, whatever $u$ may be, \begin{align*} \sin (u+v) &= \sin u \cos v + \cos u \sin v, \\ \cos (u+v) &= \cos u \cos v - \sin u \sin v, \\ \exp (u+v) &= \exp u \exp v. \end{align*}\index{Generalization} \item[Prob. 80.] Prove that the following are identities: \begin{align*} \cosh^2 u - \sinh^2 u &= 1, \\ \cosh u + \sinh u &= \exp u, \\ \cosh u - \sinh u &= \exp (-u), \\ \cosh u &= \tfrac{1}{2} [\exp u + \exp (-u)], \\ \sinh u &= \tfrac{1}{2} [\exp u - \exp (-u)]. \end{align*} \end{enumerate} \normalsize \chapter{Functions of Pure Imaginaries.}% \index{Functions!of pure imaginaries}\index{Pure imaginary} In the defining identities% \index{Algebraic identity} \begin{align*} \cosh u &= 1 + \frac{1}{2!} u^2 + \frac{1}{4!} u^4 + \dotsb, \\ \sinh u &= 1 + \frac{1}{3!} u^3 + \frac{1}{5!} u^5 + \dotsb, \end{align*} put for $u$ the pure imaginary $iy$, then \begin{align*} \cosh iy &= 1 - \frac{1}{2!} y^2 + \frac{1}{4!} y^4 - \dotsb = \cos y, \tag{57} \\ \sinh iy &= iy + \frac{1}{3!} (iy)^3 + \frac{1}{5!} (iy)^5 + \dotsb \\ &= i\left[ y - \frac{1}{3!} y^3 + \frac{1}{5!} y^5 - \dotsb \right] = i\sin y, \tag{58} \\ \intertext{and, by division,} \tanh iy &= i\tan y. \tag{59} \end{align*} These formulas serve to interchange hyperbolic and circular functions. The hyperbolic cosine of a pure imaginary is real, and the hyperbolic sine and tangent are pure imaginaries. The following table exhibits the variation of $\sinh u$, $\cosh u$. $\tanh u$, $\exp u$, as $u$ takes a succession of pure imaginary values. %%\index{Tables} %% RWD Nickalls moved \index{Tables} into table footnote below \begin{minipage}{10cm}{ \begin{center} \begin{tabular}{|c|c|c|c|c|} \hline \rule[-5pt]{0pt}{16pt} $u$ & $\sinh u$ & $\cosh u$ & $\tanh u$ & $\exp u$ \\ \hline \rule[-5pt]{0pt}{16pt} $0$ & $0$ & $1$ & $0$ & $1$ \\ \hline \rule[-5pt]{0pt}{16pt} $\frac{1}{4}i\pi$ & $.7i$ & $.7\footnotemark$ & $i$ & $.7(1+i)$ \\ \hline \rule[-5pt]{0pt}{16pt} $\frac{1}{2}i\pi$ & $i$ & $0$ & $\infty i$ & $i$ \\ \hline \rule[-5pt]{0pt}{16pt} $\frac{3}{4}i\pi$ & $.7i$ & $-.7$ & $-i$ & $.7(1-i)$ \\ \hline \rule[-5pt]{0pt}{16pt} $i\pi$ & $0$ & $-1$ & $0$ & $-1$ \\ \hline \rule[-5pt]{0pt}{16pt} $\frac{5}{4}i\pi$ & $-.7i$ & $-.7$ & $i$ & $-.7(1+i)$ \\ \hline \rule[-5pt]{0pt}{16pt} $\frac{3}{2}i\pi$ & $-i$ & $0$ & $\infty i$ & $-i$ \\ \hline \rule[-5pt]{0pt}{16pt} $\frac{7}{4}i\pi$ & $-.7i$ & $.7$ & $-i$ & $-.7(1-i)$ \\ \hline \rule[-5pt]{0pt}{16pt} $2i\pi$ & $0$ & $1$ & $0$ & $1$ \\ \hline \end{tabular} \footnotetext{In this table $.7$ is written for $\frac{1}{2}\sqrt{2}, = .707\dotsc$.\index{Tables}} %% RWD Nickalls: I have moved the above \index{} command to here% \end{center} }\end{minipage} \small \begin{enumerate} \item[Prob.~81.] Prove the following identities: \begin{align*} \cos y = \cosh iy \phantom{\frac{1}{i}} &= \frac{1}{2} \left[\exp iy + \exp (-iy)\right], \\ \sin y = \frac{1}{i} \sinh iy &= \frac{1}{2i} \left[\exp iy - \exp (-iy)\right], \\ \cos y + i\sin y &= \cosh iy + \sinh iy = \exp iy, \\ \cos y - i\sin y &= \cosh iy - \sinh iy = \exp\, (-iy), \\ \cos iy &= \cosh y, \quad \sin iy = i\sinh y. \end{align*}\index{Circular functions}% \index{Hyperbolic functions!relations to circular functions}% \index{Interchange of hyperbolic and circular functions}% \index{Relations among functions} \item[Prob.~82.] Equating the respective real and imaginary parts on each side of the equation $\cos ny + i\sin ny = (\cos y + i\sin y)^n$, express $\cos ny$ in powers of $\cos y$, $\sin y$; and hence derive the corresponding expression for $\cosh ny$.\index{Circular functions!of complex numbers} \item[Prob.~83.] Show that, in the identities (57) and (58), $y$ may be replaced by a general complex, and hence that \begin{align*} \sinh (x \pm iy) &= \pm i \sin (y \mp ix),\\ \cosh (x \pm iy) &= \cos (y \mp ix),\\ \sin (x \pm iy) &= \pm i \sinh (y \mp ix),\\ \cos (x \pm iy) &= \cosh (y \mp ix). \end{align*} \item[Prob.~84.] From the product-series for $\sin x$ derive that for $\sinh x$: \begin{align*} \sin x &= x\left(1 - \frac{x^2}{ \pi^2}\right) \left(1 - \frac{x^2}{2^2\pi^2}\right) \left(1 - \frac{x^2}{3^2\pi^2}\right) \ldots,\\ \sinh x &= x\left(1 + \frac{x^2}{ \pi^2}\right) \left(1 + \frac{x^2}{2^2\pi^2}\right) \left(1 + \frac{x^2}{3^2\pi^2}\right) \ldots. \end{align*}\index{Product-series} \end{enumerate} \normalsize \chapter{Functions of $x+iy$ in the Form $X+iY$.} By the addition-formulas, \begin{gather*} \begin{aligned} \cosh (x + iy) &= \cosh x \cosh iy + \sinh x \sinh iy,\\ \sinh (x + iy) &= \sinh x \cosh iy + \cosh x \sinh iy, \end{aligned} \intertext{but} \cosh iy = \cos y,\quad \sinh iy = i \sin y, \\ \intertext{hence} \left. \begin{aligned} \cosh (x + iy) &= \cosh x \cos y + i \sinh x \sin y,\\ \sinh (x + iy) &= \sinh x \cos y + i \cosh x \sin y. \end{aligned} \right\}\tag{60} \end{gather*} Thus if $\cosh (x + iy) = a+ib$, $\sinh (x + iy) = c + id$, then \begin{equation} \left. \begin{aligned} a &= \cosh x \cos y, &\quad b &= \sinh x \sin y,\\ c &= \sinh x \cos y, &\quad d &= \cosh x \sin y. \end{aligned} \right\}\tag{61} \end{equation} From these expressions the complex tables at the end of this chapter have been computed. Writing $\cosh z = Z$, where $z = x + iy$, $Z = X + iY$; let the complex numbers $z, Z$ be represented on Argand diagrams,% \index{Argand diagram}\index{Construction!of charts} in the usual way, by the points whose coordinates are $(x, y)$, $(X, Y)$; and let the point $z$ move parallel to the $y$-axis, on a given line $x = m$, then the point $Z$ will describe an ellipse whose equation, obtained by eliminating $y$ between the equations $X= \cosh m \cos y$, $Y= \sinh m \sin y$, is \begin{equation*} \frac{X^2}{(\cosh m)^2} + \frac{Y^2}{(\sinh m)^2} = 1, \end{equation*} and which, as the parameter $m$ varies, represents a series of confocal ellipses, the distance between whose foci is unity. Similarly, if the point $z$ move parallel to the $x$-axis, on a given line $y=n$, the point $Z$ will describe an hyperbola whose equation, obtained by eliminating the variable $x$ from the equations. $X = \cosh x \cos n$, $Y = \sinh x \sin n$, is \begin{equation*} \frac{X^2}{(\cos n)^2} - \frac{Y^2}{(\sin n)^2} = 1, \end{equation*} and which, as the parameter $n$ varies, represents a series of hyperbolas confocal with the former series of ellipses.\index{Ellipses, chart of confocal}\index{Hyperbola} These two systems of curves, when accurately drawn at close intervals on the $Z$ plane, constitute a chart of the hyperbolic cosine; and the numerical value of $\cosh (m + in)$ can be read off at the intersection of the ellipse whose parameter is $m$ with the hyperbola whose parameter is $n$.\footnote{% Such a chart is given by Kennelly, Proc.~A.~I.~E.~E., April 1895, and is used by him to obtain the numerical values of $\cosh (x + iy)$, $\sinh (x+iy)$, which present themselves as the measures of certain vector quantities in the theory of alternating currents. (See Art.~37.) The chart is constructed for values of $x$ and of $y$ between 0 and 1.2; but it is available for all values of $y$, on account of the periodicity of the functions.}% \index{Alternating currents}\index{Chart!of hyperbolic functions}% \index{Kennelly's chart} A similar chart can be drawn for $\sinh (x+iy)$, as indicated in Prob.~85. \medskip \begin{comment} RWD Nickalls : I have inserted the following `empty' subsubsection{} command, ---which is effectively invisible. LaTeX requires some form of `section' command as an anchor in order to make the pageref links work correctly. Otherwise, the links will just go to the page of the current chapter (which is one page earlier in this particular case). Note that this particular \label{} is used (pointed to) by three other locations using the \pageref{period-hyp-funct} command. These 3 links all work correctly now. \end{comment} \subsubsection*{}% Periodicity of Hyperbolic Functions. \label{period-hyp-funct}---The functions $\sinh u$ and $\cosh u$ have the pure imaginary period $2i\pi$. For \begin{align*} \sinh(u+2i\pi) &= \sinh u \cos 2\pi + i \cosh u \sin 2\pi = \sinh u,\\ \cosh(u+2i\pi) &= \cosh u \cos 2\pi + i \sinh u \sin 2\pi = \cosh u. \end{align*}\index{Function!periodic}\index{Periodicity} The functions $\sinh u$ and $\cosh u$ each change sign when the argument $u$ is increased by the half period $i\pi$. For \begin{align*} \sinh (u+i\pi) &= \sinh u \cos \pi + i \cosh u \sin \pi = -\sinh u,\\ \cosh (u+i\pi) &= \cosh u \cos \pi + i \sinh u \sin \pi = -\cosh u. \end{align*} The function $\tanh u$ has the period $i\pi$. For, it follows from the last two identities, by dividing member by member, that \begin{equation*} \tanh (u+i\pi) = \tanh u. \end{equation*} By a similar use of the addition formulas it is shown that \begin{equation*} \sinh (u + \frac{1}{2} i\pi) = i \cosh u,\quad \cosh (u + \frac{1}{2} i\pi) = i \sinh u. \end{equation*} By means of these periodic, half-periodic, and quarter-periodic relations, the hyperbolic functions of $x + iy$ are easily expressible in terms of functions of $x+iy'$, in which $y'$ is less than $\frac{1}{2} \pi$. The hyperbolic functions are classed in the modern function-theory of a complex variable as functions that are singly periodic with a pure imaginary period, just as the circular functions are singly periodic with a real period, and the elliptic functions are doubly periodic with both a real and a pure imaginary period. \medskip Multiple Values of Inverse Hyperbolic Functions.---It follows from the periodicity of the direct functions that the inverse functions $\sinh^{-1} m$ and $\cosh^{-1} m$ have each an indefinite number of values arranged in a series at intervals of $2i\pi$. That particular value of $\sinh^{-1} m$ which has the coefficient of $i$ not greater than $\frac{1}{2}\pi$ nor less than $-\frac{1}{2}\pi$ is called the principal value of $\sinh^{-1} m$; and that particular value of $\cosh^{-1} m$ which has the coefficient of $i$ not greater than $\pi$ nor less than zero is called the principal value of $\cosh^{-1} m$. When it is necessary to distinguish between the general value and the principal value the symbol of the former will be capitalized; thus \begin{gather*} \text{Sinh}^{-1} m = \sinh^{-1} m + 2ir\pi,\quad \text{Cosh}^{-1} m = \cosh^{-1} m + 2ir\pi,\\ \text{Tanh}^{-1} m = \tanh^{-1} m + ir\pi, \end{gather*} in which $r$ is any integer, positive or negative.% \index{Ambiguity of value}\index{Anti-hyperbolic functions}% \index{Multiple values} \medskip Complex Roots of Cubic Equations.---It is well known that when the roots of a cubic equation are all real they are expressible in terms of circular functions. Analogous hyperbolic expressions are easily found when two of the roots are complex. Let the cubic, with second term removed, be written \begin{equation*} x^3 \pm 3bx = 2c. \end{equation*} Consider first the case in which $b$ has the positive sign. Let $x = r \sinh u$, substitute, and divide by $r^3$, then \begin{equation*} \sinh^3 u + \frac{3b}{r^2} \sinh u = \frac{2c}{r^3}. \end{equation*} Comparison with the formula $\sinh^3 u + \frac{3}{4} \sinh u = \frac{1}{4} \sinh 3u$ gives \begin{gather*} \frac{3b}{r^2} = \frac{3}{4},\quad \frac{2c}{r^3} = \frac{\sinh 3u}{4},\\ \intertext{whence} r = 2b^{\frac{1}{2}},\quad \sinh 3u = \frac{c}{b^{\frac{3}{2}}},\quad u = \frac{1}{3} \sinh^{-1} \frac{c}{b^{\frac{3}{2}}}; \\ \intertext{therefore} x = 2b^{\frac{1}{2}} \sinh \left(\frac{1}{3}\sinh^{-1}\frac{c}{b^{\frac{3}{2}}} \right), \end{gather*} in which the sign of $b^{\frac{1}{2}}$ is to be taken the same as the sign of $c$. Now let the principal value of $\sinh^{-1}\dfrac{c}{b^{\frac{3}{2}}}$, found from the tables, be $n$; then two of the imaginary values are $n\pm 2i\pi$, hence the three values of $x$ are $2b^{\frac{1}{2}} \sinh\dfrac{n}3$ and $2b^{\frac{1}{2}} \sinh\left(\dfrac{n}{3} \pm \dfrac{2i\pi}{3} \right)$. The last two reduce to $-b^{\frac{1}{2}} \sinh\left(\dfrac{n}{3} \pm i\sqrt{3}\cosh\dfrac{n}{3} \right)$. Next, let the coefficient of $x$ be negative and equal to $-3b$. It may then be shown similarly that the substitution $x = r \sin \theta$ leads to the three solutions \begin{equation*} -2b^{\frac{1}{2}} \sin\frac{n}{3},\quad b^{\frac{1}{2}} \left(\sin\frac{n}{3} \pm \sqrt{3}\cos\frac{n}{3}\right),\quad \text{ where } n = \sin^{-1}\frac{c}{b^{\frac{3}{2}}}. \end{equation*} These roots are all real when $c \ngtr b^{\frac{3}{2}}$. If $c > b^{\frac{3}{2}}$, the substitution $x = r\cosh u$ leads to the solution \begin{equation*} x = 2b^{\frac{1}{2}} \cosh\left(\frac{1}{3} \cosh^{-1}\frac{c}{b^{\frac{3}{2}}} \right), \end{equation*} which gives the three roots \begin{equation*} 2b^{\frac{1}{2}} \cosh\frac{n}{3},\quad -b^{\frac{1}{2}} \left( \cosh\frac{n}{3} \pm i\sqrt{3}\sinh\frac{n}3 \right),\quad \text{ wherein } n = \cosh^{-1}\frac{c}{b^{\frac{3}{2}}}, \end{equation*} in which the sign of $b^{\frac{1}{2}}$ is to be taken the same as the sign of $c$. \index{Hyperbolic functions!applictions of|(} \small \begin{enumerate} \item[Prob.~85.] Show that the chart of $\cosh (x + iy)$ can be adapted to $\sinh (x + iy)$, by turning through a right angle; also to $\sin (x + iy)$. \item[Prob.~86.] Prove the identity \begin{equation*} \tanh (x + iy) = \frac{\sinh 2x + i \sin 2y}{\cosh 2x + \cos 2y}. \end{equation*} \item[Prob.~87.] If $\cosh (x + iy) = a + ib$, be written in the ``modulus and amplitude'' form as $r(\cos\theta + i\sin \theta), = r \exp i\theta$, then \begin{align*} r^2 = a^2 + b^2 &= \cosh^2 x = \sin^2 y = \cos^2 y - \sinh^2 x,\\ \tan \theta = \frac{b}{a} &= \tanh x \tan y. \end{align*}% \index{Amplitude!of complex number}\index{Modulus} \index{Applications|(} \item[Prob.~88.] Find the modulus and amplitude of $\sinh (x + iy)$. \item[Prob.~89.] Show that the period of $\exp \dfrac{2\pi u}{a}$ is $ia$. \item[Prob.~90.] When $m$ is real and $> 1$, $\cos^{-1} m = i \cosh^{-1} m$, $\sin^{-1} m = \frac{\pi}2 - i \cosh^{-1} m$. When $m$ is real and $< 1$, $\cosh^{-1} m = i \cos^{-1} m$. \end{enumerate}\index{Complex numbers|)}% \index{Hyperbolic functions!of complex numbers|)}% \index{Numbers, complex|)} \normalsize \chapter{The Catenary}\index{Catenary}\index{Physical problems|(} A flexible inextensible string is suspended from two fixed points, and takes up a position of equilibrium under the action of gravity. It is required to find the equation of the curve in which it hangs. Let $w$ be the weight of unit length, and $s$ the length of arc $AP$ measured from the lowest point $A$; then $ws$ is the weight of the portion $AP$. This is balanced by the terminal tensions, $T$ acting in the tangent line at $P$, and $H$ in the horizontal tangent. Resolving horizontally and vertically gives \begin{equation*} T\cos\phi = H,\quad T\sin\phi = ws, \end{equation*} in which $\phi$ is the inclination of the tangent at $P$; hence \begin{equation*} \tan\phi = \frac{ws}{H} = \frac{s}{c}, \end{equation*} where $c$ is written for $\dfrac{H}{w}$, the length whose weight is the constant horizontal tension; therefore \begin{gather*} \frac{dy}{dx}=\frac{s}{c},\quad \frac{ds}{dx}=\sqrt{1+\frac{s^2}{c^2}},\quad \frac{dx}{c}=\frac{ds}{\sqrt{s^2+c^2}}, \\ \frac{x}{c}=\sinh^{-1}\frac{s}{c},\quad \sinh\frac{x}{c}=\frac{s}{c}=\frac{dy}{dx},\quad \frac{y}{c}=\cosh\frac{x}{c}, \end{gather*} which is the required equation of the catenary, referred to an axis of $x$ drawn at a distance $c$ below $A$. The following trigonometric method illustrates the use of the gudermanian: The ``intrinsic equation,'' $s = c\tan\phi$, gives $ds = c\sec^2\phi\, d\phi$; hence $dx = ds\cos\phi = c\sec\phi\, d\phi$; $dy = ds\sin\phi = c\sec\phi\tan\phi\, d\phi$; thus $x = c\gd^{-1}\phi, y = c\sec\phi$; whence $\frac{y}{c} = \sec\phi = \sec\gd\frac{x}{c} = \cosh \frac{x}{c}$; and $\frac{s}{c} = \tan \gd\frac{x}{c} = \sinh\frac{x}{c}$.% \index{Anti-gudermanian}\index{Differential equation}% \index{Gudermanian!function}\index{Intrinsic equation} \medskip Numerical Exercise.---A chain whose length is 30 feet is suspended from two points 20 feet apart in the same horizontal; find the parameter $c$, and the depth of the lowest point. The equation $\frac{s}{c} = \sinh\frac{x}{c}$ gives $\frac{15}{c} = \sinh\frac{10}{c}$, which, by putting $\frac{10}{c} = z$, may be written $1.5 z = \sinh z$. By examining the intersection of the graphs of $y = \sinh z$, $y = 1.5 z$, it appears that the root of this equation is $z = 1.6$, nearly. To find a closer approximation to the root, write the equation in the form $f(z) = \sinh z - 1.5 z = 0$, then, by the tables, \begin{align*} f(1.60) &= 2.3756 - 2.4000 = -.0244, \\ f(1.62) &= 2.4276 - 2.4300 = -.0024, \\ f(1.64) &= 2.4806 - 2.4600 = +.0206; \end{align*} whence, by interpolation, it is found that $f(1.6221) = 0$, and $z = 1.6221$, $c = \frac{10}{z} = 6.1649$. The ordinate of either of the fixed points is given by the equation \begin{equation*} \frac{y}{c} = \cosh\frac{x}{c} = \cosh\frac{10}{c} = \cosh 1.6221 = 2.6306, \end{equation*} from tables; hence $y = 16.2174$, and required depth of the vertex $ = y - c = 10.0525$ feet.\footnote{See a similar problem in Chap.~1, Art.~7.}\index{Interpolation} \small \begin{enumerate} \item[Prob.~91.] In the above numerical problem, find the inclination of the terminal tangent to the horizon.\index{Equations!Numerical} \item[Prob.~92.] If a perpendicular $MN$ be drawn from the foot of the ordinate to the tangent at $P$, prove that $MN$ is equal to the constant $c$, and that $NP$ is equal to the arc $AP$. Hence show that the locus of $N$ is the involute of the catenary, and has the property that the length of the tangent, from the point of contact to the axis of $x$, is constant. (This is the characteristic property of the tractory).\index{Involute!of catenary}% \index{Tractory} \item[Prob.~93.] The tension $T$ at any point is equal to the weight of a portion of the string whose length is equal to the ordinate $y$ of that point. \item[Prob.~94.] An arch in the form of an inverted catenary\footnote{ For the theory of this form of arch, see ``Arch'' in the Encyclop\ae{}dia Britannica.} is $30$ feet wide and $10$ feet high; show that the length of the arch can be obtained from the equations $\cosh z - \frac{2}{3}z = i$, $2s = \dfrac{30}{z} \sinh z$.% \index{Arch} \end{enumerate} \normalsize \chapter{Catenary of Uniform Strength.}\index{Catenary!of uniform strength} If the area of the normal section at any point be made proportional to the tension at that point, there will then be a constant tension per unit of area, and the tendency to break will be the same at all points. To find the equation of the curve of equilibrium under gravity, consider the equilibrium of an element $PP'$ whose length is $ds$, and whose weight is $g\rho\omega\, ds$, where $\omega$ is the section at $P$, and $\rho$ the uniform density. This weight is balanced by the difference of the vertical components of the tensions at $P$ and $P'$, hence \begin{align*} d(T\sin\phi) &= g\rho\omega\, ds,\\ d(T\cos\phi) &= 0; \end{align*} therefore $T\cos\phi = H$, the tension at the lowest point, and $T = H \sec \phi$. Again, if $\omega_0$ be the section at the lowest point, then by hypothesis $\frac{\omega}{\omega_0} = \frac{T}{H} = \sec \phi$, and the first equation becomes \begin{gather*} Hd(\sec\phi\sin\phi) = g\rho\omega_0\sec\phi\, ds, \\ \intertext{or} cd\tan\phi = \sec\phi\, ds, \end{gather*} where $c$ stands for the constant $\dfrac{H}{g\rho\omega_0}$, the length of string (of section $\omega_0$) whose weight is equal to the tension at the lowest point; hence, \begin{equation*} ds = c \sec\phi\, d\phi,\quad \frac{s}{c} = \gd^{-1}\phi, \end{equation*} the intrinsic equation of the catenary of uniform strength.% \index{Intrinsic equation} Also \begin{gather*} dx = ds\cos\phi = c d\phi,\quad dy = ds\sin\phi = c\tan\phi\, d\phi; \\ \intertext{hence} x = c\phi,\quad y = c \log\sec\phi, \intertext{and thus the Cartesian equation is} \frac{y}{c} = \log \sec\frac{x}{c}, \end{gather*} in which the axis of $x$ is the tangent at the lowest point.\index{Differential equation} \small \begin{enumerate} \item[Prob.~95.] Using the same data as in Art.~31, find the parameter $c$ and the depth of the lowest point. (The equation $\dfrac{x}{c} = \gd\dfrac{s}{c}$ gives $\dfrac{10}{c} = \gd\dfrac{15}{c}$, which, by putting $\dfrac{15}{c} = z$, becomes $\gd{z}= \dfrac{2}{3}z$. From the graph it is seen that $z$ is nearly $1.8$. If $f(z) = \gd{z}-\dfrac{2}{3}z$, then, from the tables of the gudermanian at the end of this chapter, \begin{align*} f(1.80) & = 1.2432 - 1.2000 = +.0432,\\ f(1.90) & = 1.2739 - 1.2667 = +.0072,\\ f(1.95) & = 1.2881 - 1.3000 = -.0119, \end{align*} whence, by interpolation, $z = 1.9189$ and $c = 7.8170$. Again, $\dfrac{y}{c} = \log_e{\sec{\dfrac{x}{c}}}$; but $\dfrac{x}{c} - \dfrac{10}{c} = 1.2793$; and $1.2793 \text{ radians } = 73^{\circ}\,17'\,55''$; hence $y = 7.8170 \times .41914 \times 2.3026 = 7.5443$, the required depth.)\index{Interpolation} \item[Prob.~96.] Find the inclination of the terminal tangent. \item[Prob.~97.] Show that the curve has two vertical asymptotes. \item[Prob.~98.] Prove that the law of the tension $T$, and of the section $\omega$, at a distance $s$, measured from the lowest point along the curve, is \begin{equation*} \frac{T}{H} = \frac{\omega}{\omega_0} = \cosh{\frac{c}{h}}; \end{equation*} and show that in the above numerical example the terminal section is $3.48$ times the minimum section.\index{Equations!Numerical} \item[Prob.~99.] Prove that the radius of curvature is given by $\rho = c \cosh{\dfrac{s}{f}}$. Also that the weight of the arc $s$ is given by $W = H \sinh{\dfrac{s}{f}}$, in which $s$ is measured from the vertex. \end{enumerate} \normalsize \chapter{The Elastic Catenary.}% \index{Catenary!Elastic}\index{Curvature} An elastic string of uniform section and density in its natural state is suspended from two points. Find its equation of equilibrium. Let the element $d\sigma$ stretch into $ds$; then, by Hooke's law, $ds = d\sigma(1 + \lambda T)$, where $\lambda$ is the elastic constant of the string; hence the weight of the stretched element $ds = g\rho\omega\, d\sigma = \dfrac{g\rho\omega\, ds}{(1 + \lambda T)}$. Accordingly, as before, \begin{align*} d(T\sin{\phi}) & = \frac{g\rho\omega\, ds}{(1 + \lambda T)},\\ \intertext{and} T\cos{\phi} & = H = g\rho\omega c,\\ \intertext{hence} cd(\tan{\phi}) & = \frac{ds}{(1 + \mu\sec{\phi})}, \intertext{in which $\mu$ stands for $\lambda H$, the extension at the lowest point; therefore} ds &= c(\sec^2\phi + \mu\sec^3\phi)d\phi, \\ \frac{s}{c} &= \tan\phi + \frac{1}{2}\mu(\sec\phi\tan\phi + \gd^{-1}\phi), \tag*{[prob.~20, p.~37} \end{align*} which is the intrinsic equation of the curve, and reduces to that of the common catenary when $\mu = 0$. The coordinates $x$, $y$ may be expressed in terms of the single parameter $\phi$ by putting \begin{align*} dx &= ds\cos\phi = c(\sec\phi + \mu\sec^2\phi)d\phi, \\ dy &= ds\sin\phi = c(\sec^2\phi + \mu\sec^3\phi)\sin\phi\, d\phi. \\ \intertext{Whence} \frac{x}{c} &= \gd^{-1}\phi + \mu\tan\phi,\quad \frac{y}{c} = \sec\phi + \frac{1}{2}\mu\tan^2\phi. \end{align*}\index{Intrinsic equation} These equations are more convenient than the result of eliminating $\phi$, which is somewhat complicated. \chapter{The Tractory.}% \index{Arch}\index{Tractory} [Note.\footnote{This curve is used in Schiele's anti-friction pivot (Minchin's Statics, Vol.~I, p.~242); and in the theory of the skew circular arch, the horizontal projection of the joints being a tractory. (See ``Arch,'' Encyclopædia Britannica.) The equation $\phi=\gd\frac{t}{c}$ furnishes a convenient method of plotting the curve.}] To find the equation of the curve which possesses the property that the length of the tangent from the point of contact to the axis of $x$ is constant. \begin{center} \includegraphics[width=40mm]{fig11.png} \end{center} Let $PT$, $P'T'$ be two consecutive tangents such that $PT = P'T' = c$, and let $OT = t$; draw $TS$ perpendicular to $P'T'$; then if $PP' = ds$, it is evident that $ST'$ differs from $ds$ by an infinitesimal of a higher order. Let $PT$ make an angle $\phi$ with $OA$, the axis of $y$; then (to the first order of infinitesimals) $PT d\phi = TS = TT'\cos\phi$; that is, \begin{gather*} c\,d\phi = \cos\phi\, dt,\quad t = c\,\gd^{-1}\phi, \\ x = t-c\,\sin\phi = c(\gd^{-1}\phi-\sin\phi),\quad y = c\,\cos\phi. \end{gather*}% \index{Anti-gudermanian}\index{Differential equation} This is a convenient single-parameter form, which gives all values of $x$, $y$ as $\phi$ increases from $0$ to $\frac{1}{2}\pi$. The value of $s$, expressed in the same form, is found from the relation \begin{equation*} ds = ST' = dt\,\sin\phi = c\tan\,\phi\,d\phi,\quad s = c\,\log_e\sec\phi. \end{equation*} At the point $A$, $\phi=0$, $x=0$, $s=0$, $t=0$, $y=c$. The Cartesian equation, obtained by eliminating $\phi$, is \begin{equation*} \frac{x}{c}= \gd^{-1}\left(\cos^{-1}\frac{y}{c}\right) - \sin\left(\cos^{-1}\frac{y}{c}\right) = \cosh^{-1}\frac{c}{y} - \sqrt{1-\frac{y^2}{c^2}}. \end{equation*} If $u$ be put for $\dfrac{t}{c}$, and be taken as independent variable, $\phi=\gd u$, $\dfrac{x}{c} = u - \tanh u$, $\dfrac{y}{c} = \sech u$, $\dfrac{s}{c} = \log\cosh u.$ \small \begin{enumerate} \item[Prob.~100.] Given $t = 2c$, show that $\phi = 74^\circ\, 35'$, $s = 1.3249c$, $y = .2658c$, $x = 1.0360c.$ At what point is $t = c$? \item[Prob.~101.] Show that the evolute of the tractory is the catenary. (See Prob.~92.)\index{Evolute of tractory} \item[Prob.~102.] Find the radius of curvature of the tractory in terms of $\phi$; and derive the intrinsic equation of the involute.% \index{Intrinsic equation}\index{Involute!of tractory} \end{enumerate} \normalsize \chapter{The Loxodrome.}\index{Curvature}\index{Loxodrome} On the surface of a sphere a curve starts from the equator in a given direction and cuts all the meridians at the same angle. To find its equation in latitude-and-longitude coordinates: \begin{center} \includegraphics[width=45mm]{fig12.png} \end{center} Let the loxodrome cross two consecutive meridians $AM$, $AN$ in the points $P$, $Q$; let $P\!R$ be a parallel of latitude; let $O\!M = x$, $M\!P = y$, $M\!N' = dx$, $RQ = dy$, all in radian measure; and let the angle $M\!O\!P = RPQ = \alpha$; then \begin{equation*} \tan\alpha = \frac{RQ}{P\!R}\text{, but } P\!R = M\!N\cos M\!P,\footnotemark \end{equation*} \footnotetext{Jones, Trigonometry (Ithaca, 1890), p.~185.}% \index{Jones' Trigonometry} hence $dx\,\tan\alpha = dy\,\sec y$, and $x\tan\alpha = \gd^{-1}y$, there being no integration-constant since $y$ vanishes with $x$; thus the required equation is \begin{equation*} y = \gd(x\,\tan\alpha). \end{equation*}% \index{Anti-gudermanian}\index{Differential equation} To find the length of the arc $OP$: Integrate the equation \begin{equation*} ds = dy\,\csc\alpha, \text{ whence } s = y\,\csc\alpha. \end{equation*} To illustrate numerically, suppose a ship sails northeast, from a point on the equator, until her difference of longitude is $45^\circ$, find her latitude and distance: Here $\tan\alpha = 1$, and $y = \gd x = \gd\frac{1}{4}\pi = \gd (.7854) = .7152$ radians; $s = y\sqrt{2} = 1.0114$ radii. The latitude in degrees is $40.980$. If the ship set out from latitude $y_1$, the formula must be modified as follows: Integrating the above differential equation between the limits $(x_1, y_1)$ and $(x_2, y_2)$ gives \begin{equation*} (x_2 - x_1)\tan\alpha = \gd^{-1}y_2 - \gd^{-1}y_1; \end{equation*} hence $\gd^{-1}y_2 = \gd^{-1}y_1 + (x_2 - x_1)\tan\alpha$, from which the final latitude can be found when the initial latitude and the difference of longitude are given. The distance sailed is equal to $(y_2 - y_1)\csc\alpha$ radii, a radius being $60 \times \frac{180}{\pi}$ nautical miles.\index{Gudermanian!function} \medskip Mercator's Chart.---In this projection the meridians are parallel straight lines, and the loxodrome becomes the straight line $y' = x\tan\alpha$, hence the relations between the coordinates of corresponding points on the plane and sphere are $x' = x$, $y' = \gd^{-1}y$. Thus the latitude $y$ is magnified into $\gd^{-1}y$, which is tabulated under the name of ``meridional part for latitude $y$''; the values of $y$ and of $y'$ being given in minutes. A chart constructed accurately from the tables can be used to furnish graphical solutions of problems like the one proposed above.% \index{Chart!Mercator's}\index{Mercator's Chart} \small \begin{enumerate} \item[Prob.~103.] Find the distance on a rhumb line between the points ($30^\circ$ N, $20^\circ$ E) and ($30^\circ$ S, $40^\circ$ E).\index{Rhumb line} \end{enumerate} \normalsize \chapter{Combined Flexure and Tension.}% \index{Beams, flexure of}\index{Flexure of Beams} A beam that is built-in at one end carries a load $P$ at the other, and is also subjected to a horizontal tensile force $Q$ applied at the same point; to find the equation of the curve assumed by its neutral surface: Let $x, y$ be any point of the elastic curve, referred to the free end as origin, then the bending moment for this point is $Qy - Px$. Hence, with the usual notation of the theory of flexure,\footnote{Merriman, Mechanics of Materials (New York, 1895), pp.~70--77, 267--269.} \begin{gather*} EI\frac{d^2y}{dx^2} = Qy - Px,\quad \frac{d^2y}{dx^2} = n^2(y - mx), \tag*{$\left[ m = \dfrac{P}{Q}\right.,\ n^2=\dfrac{Q}{EI}$.} \\ \intertext{which, on putting $y - mx = u$, and $\dfrac{d^2y}{dx^2} = \dfrac{d^2u}{dx^2}$, becomes} \frac{d^2u}{dx^2} = n^2u, \\ \intertext{whence} u = A \cosh nx + B \sinh nx, \tag*{[probs.~28, 30} \\ \intertext{that is,} y = mx + A \cosh nx + B \sinh nx. \end{gather*} The arbitrary constants $A$, $B$ are to be determined by the terminal conditions.\index{Terminal conditions} At the free end $x = 0$, $y = 0$; hence $A$ must be zero, and \begin{align*} y &= mx + B \sinh nx, \\ \frac{dy}{dx} &= m+nB \cosh nx; \\ \intertext{but at the fixed end, $x = l$, and $\dfrac{dy}{dx} = 0$, hence} B &= -\frac{m}{n} \cosh nl, \\ \intertext{and accordingly} y &= mx - \frac{m \sinh nx}{n \cosh nl}. \end{align*} To obtain the deflection of the loaded end, find the ordinate of the fixed end by putting $x = l$, giving \begin{equation*} \text{deflection} = m(l - \frac{1}{n}\tanh nl), \end{equation*}\index{Deflection of beams} \small \begin{enumerate} \item[Prob.~104.] Compute the deflection of a cast-iron beam, $2 \times 2$ inches section, and $6$ feet span, built-in at one end and carrying a load of $100$ pounds at the other end, the beam being subjected to a horizontal tension of $8000$ pounds. [In this case $I = \frac{4}{3}, E = 15 \times 10^6, Q = 8000, P = 100$; hence $n = \frac{1}{50}, m = \frac{1}{80}$, deflection $= \frac{1}{80}(72 - 50 \tanh 1.44) = \frac{1}{80}(72 - 44.69) = .341$ inches.] \item[Prob.~105.] If the load be uniformly distributed over the beam, say $w$ per linear unit, prove that the differential equation is \begin{equation*} EI \frac{d^2 y}{dx^2} = Qy - \tfrac{1}{2}wx^2, \text{ or } \frac{d^2 y}{dx^2} = n^2(y - mx^2), \end{equation*} and that the solution is $y = A \cosh nx + B \sinh nx + mx^2 + \dfrac{2m}{n^2}$. Show also how to determine the arbitrary constants. \end{enumerate}\index{Distributed load} \normalsize \chapter{Alternating Currents.}% \index{Alternating currents}% \index{Complex numbers!Applications of|(}% \index{Currents, alternating} [Note.\footnote{See references in foot-note Art.~27.}] In the general problem treated the cable or wire is regarded as having resistance, distributed capacity, self-induction, and leakage; although some of these may be zero in special cases.% \index{Self-induction of conductor} The line will also be considered to feed into a receiver circuit of any description; and the general solution will include the particular cases in which the receiving end is either grounded or insulated. The electromotive force may, without loss of generality, be taken as a simple harmonic function of the time, because any periodic function can be expressed in a Fourier series of simple harmonics.% \footnote{Chapter V, Art.~8.} The E.M.F.\ and the current, which may differ in phase by any angle, will be supposed to have given values at the terminals of the receiver circuit; and the problem then is to determine the E.M.F.\ and current that must be kept up at the generator terminals; and also to express the values of these quantities at any intermediate point, distant $x$ from the receiving end; the four line-constants being supposed known, viz.: \begin{verse} $R$ = resistance, in ohms per mile, \\ $L$ = coefficient of self-induction, in henrys per mile, \\ $C$ = capacity, in farads per mile, \\ $G$ = coefficient of leakage, in mhos per mile.% \footnote{Kennelly denotes these constants by $r$, $l$, $c$, $g$. Steinmetz writes $s$ for $\omega L$, $\kappa$ for $\omega C$, $\theta$ for $G$, and he uses $C$ for current.} \end{verse}% \index{Capacity of conductor}\index{Electromotive force}% \index{Fourier series}\index{Phase angle}% \index{Resistance of conductor} It is shown in standard works% \footnote{Thomson and Tait, Natural Philosophy, Vol.~I. p.~40; Rayleigh, Theory of Sound, Vol.~I. p.~20; Bedell and Crehore, Alternating Currents, p.~214.}% \index{Bedel and Crehore's alternating currents}% \index{Rayleigh's Theory of Sound} that if any simple harmonic function $a \sin(\omega t + \theta)$ be represented by a vector of length $a$ and angle $\theta$, then two simple harmonics of the same period $\dfrac{2\pi}{\omega}$, but having different values of the phase-angle $\theta$, can be combined by adding their representative vectors.\index{Vectors} Now the E.M.F. and the current at any point of the circuit, distant $x$ from the receiving end, are of the form \begin{equation} e = e_1\sin{(\omega t + \theta)},\quad i = i_1\sin{(\omega t + \theta')}, \tag{64} \end{equation} in which the maximum values $e_1$, $i_1$, and the phase-angles $\theta$, $\theta'$, are all functions of $x$. These simple harmonics will be represented by the vectors $e_1\underline{/\theta}$, $i_1\underline{/\theta'}$; whose numerical measures are the complexes $e_1(\cos\theta + j\sin\theta)$\footnote{ In electrical theory the symbol $j$ is used, instead of $i$, for $\sqrt{-1}$.}, $i_1(\cos{\theta'} + j\sin{\theta'})$, which will be denoted by $\bar{e}$, $\bar{\imath}$. The relations between $\bar{e}$ and $\bar{\imath}$ may be obtained from the ordinary equations\footnote{Bedell and Crehore, Alternating Currents, p.~181. The sign of $dx$ is changed, because $x$ is measured from the receiving end. The coefficient of leakage, $G$, is usually taken zero, but is here retained for generality and symmetry.} \begin{equation} \frac{di}{dx} = Ge + C\frac{de}{dt},\quad \frac{de}{dx} = Ri + L\frac{di}{dt}; \tag{65} \end{equation} for, since $\dfrac{de}{dt} = \omega e_1\cos{(\omega t + \theta)} = \omega e_1 \sin{(\omega t + \theta + \frac{1}{2}\pi)}$, then $\dfrac{de}{dt}$ will be represented by the vector $\omega e_1\underline{/\theta + \frac{1}{2}\pi}$; and $\dfrac{di}{dx}$ by the sum of the two vectors $Ge_1\underline{/\theta}, C\omega e_1\underline{/\theta + \frac{1}{2}\pi}$; whose numerical measures are the complexes $G\bar{e}$, $j\omega C\bar{e}$; and similarly for $\dfrac{de}{dx}$ in the second equation; thus the relations between the complexes $\bar{e}$, $\bar{\imath}$ are \begin{equation} \frac{d\bar{\imath}}{dx} = (G + j\omega C)\bar{e},\quad \frac{d\bar{e}}{dx} = (R + j\omega L)\bar{\imath}. \tag*{(66)\footnotemark} \end{equation} \footnotetext{These relations have the advantage of not involving the time. Steinmetz derives them from first principles without using the variable $t$. For instance, he regards $R+j\omega L$ as a generalized resistance-coefficient, which, when applied to $i$, gives an E.M.F., part of which is in phase with $i$, and part in quadrature with $i$. Kennelly calls $R + j\omega L$ the conductor impedance; and $G + j\omega C$ the dielectric admittance; the reciprocal of which is the dielectric impedance.}% \index{Admittance of dielectric}\index{Impedance}% \index{Kennelly's chart}\index{Operators, generalized}% \index{Steinmetz on alternating currents} Differentiating and substituting give \begin{equation} \left. \begin{aligned} \frac{d^2\bar{e}}{dx^2} &= (R + j\omega L)(G + j\omega C)\bar{e}, \\ \frac{d^2\bar{\imath}}{dx^2} &= (R + j\omega L)(G + j\omega C)\bar{\imath}, \end{aligned} \right\} \tag{67} \end{equation} and thus $\bar{e}, \bar{\imath}$ are similar functions of $x$, to be distinguished only by their terminal values. It is now convenient to define two constants $m$, $m_1$ by the equations\footnote{The complex constants $m$, $m_1$ are written $z, y$ by Kennelly; and the variable length $x$ is written $L_2$. Steinmetz writes $v$ for $m$.}% \index{Kennelly on alternating currents} \begin{equation} m^2 = (R+j\omega L)(G + j\omega C),\quad m_1 = \frac{m}{(G + j\omega C)}; \tag{68} \end{equation} and the differential equations may then be written \begin{equation} \frac{d^2\bar{e}}{dx^2} = m^2\bar{e},\quad \frac{d^2\bar{\imath}}{dx^2} = m^2\bar{\imath}, \tag{69} \end{equation} the solutions of which are\footnote{See Art.~14, Probs.~28--30; and Art.~27, foot-note.} \begin{equation*} \bar{e} = A \cosh mx + B\ \sinh mx,\quad \bar{\imath} = A' \cosh mx + B' \sinh mx, \end{equation*} wherein only two of the four constants are arbitrary; for substituting in either of the equations (66), and equating coefficients, give \begin{gather*} (G + j\omega C)A = mB',\quad (G + j\omega C)B = mA', \\ \intertext{whence} B' = \frac{A}{m_1},\quad A' = \frac{B}{m_1}. \end{gather*}\index{Differential equation} Next let the assigned terminal values of $\bar{e}$, $\bar{\imath}$, at the receiver, be denoted by $\bar{E}, \bar{I}$; then putting $x = 0$ gives $\bar{E} = A, \bar{I} = A'$, whence $B = m_1\bar{I}, B' = \dfrac{\bar{E}}{m_1}$; and thus the general solution is \begin{equation} \left. \begin{aligned} \bar{e} &= \bar{E}\cosh mx + m_1\bar{I}\sinh mx,\\ \bar{\imath} &= \bar{I}\cosh mx + \frac{I}{m_1}\bar{E}\sinh mx. \end{aligned} \right\} \tag{70} \end{equation} If desired, these expressions could be thrown into the ordinary complex form $X + jY, X' + jY'$, by putting for the letters their complex values, and applying the addition-theorems for the hyperbolic sine and cosine. The quantities $X, Y, X', Y'$ would then be expressed as functions of $x$; and the representative vectors of $e, i$, would be $e_1\underline{/\theta}, i_1\underline{/\theta'}$, where ${e_{1}}^{2} = X^2 + Y^2, i^2 = {X'}^2 + {Y'}^2, \tan{\theta} = \dfrac{Y}{X}, \tan{\theta'} = \dfrac{Y'}{X'}$.% \index{Argand diagram} For purposes of numerical computation, however, the formulas ($70$) are the most convenient, when either a chart,\footnote{Art.~30, footnote.} or a table,\footnote{See Table II.} of $\cosh{u}$, $\sinh{u}$, is available, for complex values of $u$.% \index{Chart!of hyperbolic functions} \small \begin{enumerate} \item[Prob.~106.\footnotemark]\footnotetext{The data for this example are taken from Kennelly's article (l.~c., p.~38).}% \index{Conductor resistance and impedance} Given the four line-constants: $R$ = 2 ohms per mile, $L$ = 20 millihenrys per mile, $C$ = $\frac{1}{2}$ microfarad per mile, $G$ = 0; and given $\omega$, the angular velocity of E.M.F. to be 2000 radians per second;\index{Electromotive force} then \begin{align*} \omega L &= 40 \text{ ohms, conductor reactance per mile};\\ R + j\omega L &= 2 + 40j \text{ ohms, conductor impedance per mile};\\ \omega C &= .001 \text{ mho, dielectric susceptance per mile};\\ G + j\omega C &= .001j \text{ mho, dielectric admittance per mile};\\ (G + j\omega C)^{-1} &= -1000j \text{ ohms, dielectric impedance per mile};\\ m^2 &= (R + j\omega L)(G + j\omega C) = .04 + .002j, \\ &\qquad \text{which is the measure of } .04005\underline{/177^{\circ}8'}; \\ \intertext{therefore} m &= \text{ measure of } .2001\underline{/88^{\circ}34'} = .0050 + .2000j, \\ &\qquad \text{an abstract coefficient per mile, of dimensions } [\mathrm{length}]^{-1}, \\ m_1 &= \dfrac{m}{(G + j\omega C)} = 200 - 5j \text{ ohms}. \end{align*}\index{Reactance of conductor}% \index{Suceptance of dielectric} \indent Next let the assigned terminal conditions at the receiver be: $I = 0$ (line insulated)\index{Terminal conditions}; and $E = 1000$ volts, whose phase may be taken as the standard (or zero) phase; then at any distance $x$, by (70), \begin{align*} \bar{e} &= E\cosh{mx}, & \bar{\imath} &= \frac{E}{m_1}\sinh{mx}, \end{align*} in which $mx$ is an abstract complex. \indent Suppose it is required to find the E.M.F. and current that must be kept up at a generator $100$ miles away; then \begin{gather*} \bar{e} = 1000 \cosh(.5 + 20 j),\quad \bar{\imath} = 200 (40 - j)^{-1} \sinh(.5 + 20j), \\ \intertext{but, by Prob.~89,} \begin{aligned} \cosh(.5 + 20 j) &= \cosh(.5 + 20 j - 6\pi j) \\ &= \cosh(.5 + 1.15 j) = .4600 + .4750j \end{aligned} \end{gather*} obtained from Table II, by interpolation between $\cosh (.5 + 1.1j)$ and $\cosh (.5 + 1.2j)$; hence \begin{equation*} \bar{e} = 460 + 475j = e_1 (\cos \theta + j \sin\theta), \end{equation*} where $\log \tan \theta = \log 475 - \log 460 = .0139$, $\theta = 45^\circ\: 55'$, and $e_1 = 460 \sec \theta = 661.2$ volts, the required E.M.F.\index{Interpolation} \smallskip \indent Similarly $\sinh (.5 + 20j) = \sinh (.5 + 1.15j) = .2126 + 1.0280j$, and hence \begin{align*} \bar{\imath} = \frac{200}{1601}(40+j)(.2126+1.028j) &= \frac{1}{1601}(1495+8266j) \\ &= i_1(\cos\theta' + j\sin\theta'), \end{align*} where $\log \tan \theta' = 10.7427$, $\theta' = 79^\circ\, 45'$, $i_1 = 1495 \sec \dfrac{\theta'}{1601} = 5.25$ amperes, the phase and magnitude of required current.\index{Phase angle} \indent Next let it be required to find $e$ at $x = 8$; then \begin{equation*} \bar{e}= 1000 \cosh (.04 + 1.6j) = 1000j \sinh (.04 + .03j), \end{equation*} by subtracting $\frac{1}{2}\pi j$, and applying page~\pageref{period-hyp-funct}. Interpolation between $\sinh (0 + 0j)$ and $\sinh (0 +.1j)$ gives \begin{align*} \sinh ( 0 + .03j) &= .00000 + .02995j. \\ \intertext{Similarly} \sinh (.1 + .03j) &= .10004 + .03004j. \\ \intertext{Interpolation between the last two gives} \sinh (.04 + .03j) &= .04002 + .02999j. \end{align*} Hence $\bar{e} = j(40.02 + 29.99j) = -29.99 + 40.02j = e_1 (\cos\theta + j\sin\theta)$, where $\log \tan \theta = .12530$, $\theta = 126^\circ\, 51'$, $e_1 = -29.99 \sec 126^\circ\, 51' = 50.01$ volts.\index{Interpolation} \indent Again, let it be required to find $e$ at $x = 16$; here \begin{gather*} \bar{e} = 1000 \cosh (.08 + 3.2j) = -1000 \cosh (.08 + .06j), \\ \intertext{but} \cosh (0 + .06j) = .9970 + 0j,\ \cosh (.1 + .06j) = 1.0020 + .006j; \\ \intertext{hence} \cosh (.08 +.06j) = 1.0010 + .0048j, \\ \intertext{and} \bar{e} = -1001 + 4.8j = e_1(\cos\theta + j\sin\theta), \end{gather*} where $\theta = 180^\circ\, 17'$, $e_1 = 1001$ volts. Thus at a distance of about 16 miles the E.M.F. is the same as at the receiver, but in opposite phase. Since $\bar{e}$ is proportional to $\cosh (.005 + .2j)x$, the value of $x$ for which the phase is exactly $180^\circ$ is $\frac{\pi}{.2} = 15.7$. Similarly the phase of the E.M.F.\ at $x = 7.85$ is $90^\circ$. There is agreement in phase at any two points whose distance apart is $31.4$ miles. \indent In conclusion take the more general terminal conditions in which the line feeds into a receiver circuit, and suppose the current is to be kept at $50$ amperes, in a phase $40^\circ$ in advance of the electromotive force; then $\bar{I} 50(\cos 40^\circ + \sin 40^\circ) = 38.30 + 32.14j$, and substituting the constants in (70) gives \begin{align*} \bar{c} &= 1000 \cosh (.005 + .2j)x + (7821 + 6236j) \sinh (.005 + .2j)x \\ &= 460 + 475j - 4748 + 9366j = -4288 + 9841j = e_1(\cos\theta + j\sin\theta), \end{align*} where $\theta = 113^\circ\: 33'$, $e_1 = 10730$ volts, the E.M.F.\ at sending end. This is 17 times what was required when the other end was insulated.\index{Terminal conditions} \item[Prob.~107.] If $L = 0$, $G = 0$, $I = 0$; then $m = (1 + j)n$, $m_1 = (1 + j)n_1$ where $n^2 = \dfrac{\omega RC}{2}$, $n_1^2 = \dfrac{R}{2\omega C}$; and the solution is \begin{align*} e_1 &= \frac{1}{\sqrt{2}} E\sqrt{\cosh 2nx + \cos 2nx}, &\tan \theta &= \tan nx \tanh nx, \\ i_1 &= \frac{1}{2n_1} E\sqrt{\cosh 2nx - \cos 2nx}, &\tan \theta' &= \tan nx \coth nx . \end{align*} \item[Prob.~108.] If self-induction and capacity be zero, and the receiving end be insulated, show that the graph of the electromotive force is a catenary if $G \neq 0$, a line if $G = 0$. \item[Prob.~109.] Neglecting leakage and capacity, prove that the solution of equations (66) is $\bar{\imath} = \bar{I}$, $\bar{c} = \bar{E} + (R + j\omega L)\bar{I}x$. \item[Prob.~110.] If $x$ be measured from the sending end, show how equations (65), (66) are to be modified; and prove that \begin{equation*} \bar{e} = \bar{E}_0 \cosh mx - m_1\bar{I}_0 \sinh mx,\ \bar{\imath} = \bar{I}_0 \cosh mx - \frac{1}{m_1}\bar{E}_0 \sinh mx, \end{equation*} where $\bar{E}_0$, $\bar{I}_0$ refer to the sending end. \end{enumerate}\index{Complex numbers!Applications of|)} \normalsize \chapter{Miscellaneous Applications.} \begin{enumerate} \item[1.] The length of the arc of the logarithmic curve $y = a^x$ is $s = M(\cosh u + \log\tanh\frac{1}{2} u)$, in which $M = \dfrac{1}{\log a}$, $\sinh u = \dfrac{y}{M}$.% \index{Curvature}\index{Logarithmic!curve} \item[2.] The length of arc of the spiral of Archimedes $r = a\theta$ is $s = \frac{1}{4} a(\sinh 2u + 2u)$, where $\sinh u = \theta$.\index{Spiral of Archimedes} \item[3.] In the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ the radius of curvature is \\ $\rho = \dfrac{(a^2 \sinh^2 u + b^2 \cosh^2 u)^{\frac{3}{2}}}{ab}$; in which $u$ is the measure of the sector $AOP$, i.e.\ $\cosh u = \dfrac{x}{a}$, $\sinh u = \dfrac{y}{b}$.% \index{Areas}\index{Hyperbola} \item[4.] In an oblate spheroid, the superficial area of the zone between the equator and a parallel plane at a distance $y$ is $S=\dfrac{\pi b^2(\sinh 2u+2u)}{2e}$, wherein $b$ is the axial radius, $e$ eccentricity, $\sinh u = \dfrac{ey}{p}$, and $p$ parameter of generating ellipse.\index{Spheroid, area of oblate} \item[5.] The length of the arc of the parabola $y^2 = 2px$, measured from the vertex of the curve, is $l = \frac{1}{4}p(\sinh 2u + 2u)$, in which $\sinh u = \dfrac{y}{p} = \tan\phi$, where $\phi$ is the inclination of the terminal tangent to the initial one.% \index{Parabola} \item[6.] The centre of gravity of this arc is given by \begin{equation*} 3l\bar{x} = p^2(\cosh^3u-1),\quad 64l\bar{y} = p^2(\sinh 4u-4u); \end{equation*} and the surface of a paraboloid of revolution is $S = 2\pi\bar{y}l$.% \index{Center of gravity} \item[7.] The moment of inertia of the same arc about its terminal ordinate is $I = \mu\left[xl(x - 2\bar{x}) + \frac{1}{64}p^3N\right]$, where $\mu$ is the mass of unit length, and \begin{equation*} N = u - \frac{1}{4}\sinh 2u - \frac{1}{4}\sinh 4u + \frac{1}{12}\sinh 6u. \end{equation*}\index{Moment of inertia} \item[8.] The centre of gravity of the arc of a catenary measured from the lowest point is given by \begin{equation*} 4l\bar{y} = c^2(\sinh 2u + 2u),\ l\bar{x} = c^2(u\sinh u - \cosh u+1), \end{equation*} in which $u = \frac{x}{c}$; and the moment of inertia of this arc about its terminal abscissa is \begin{equation*} I = \mu c^3\left(\frac{1}{12}\sinh 3u + \frac{3}{4}\sinh u - u\cosh u\right). \end{equation*} \item[9.] Applications to the vibrations of bars are given in Rayleigh, Theory of Sound, Vol.~I, art.~170; to the torsion of prisms in Love, Elasticity, pp.~166--74; to the flow of heat and electricity in Byerly, Fourier Series, pp.~75--81; to wave motion in fluids in Rayleigh, Vol.~I, Appendix, p.~477, and in Bassett, Hydrodynamics, arts.~120, 384; to the theory of potential in Byerly p.~135, and in Maxwell, Electricity, arts.~172--4\index{Maxwell's Electricity}; to Non-Euclidian geometry and many other subjects in Günther\index{Gunther's Die Lehre, etc.}, Hyperbelfunktionen, Chaps.~V and VI. Several numerical examples are worked out in Laisant, Essai sur les fonctions hyperboliques.% \index{Bassett's Hydrodynamics}\index{Byerly's Fourier Series, etc.}% \index{Fourier series}\index{Laisant's Essai, etc.}% \index{Love's elasticity}\index{Potential theory}% \index{Vibrations of bars} \end{enumerate} \index{Applications|)}\index{Hyperbolic functions!applictions of|)}% \index{Physical problems|)} \chapter{Explanation of Tables.}\index{Complex numbers!Tables}% \index{Tables} In Table I the numerical values of the hyperbolic functions $\sinh u, \cosh u, \tanh u$ are tabulated for values of $u$ increasing from 0 to 4 at intervals of .02. When $u$ exceeds 4, Table IV may be used. Table II gives hyperbolic functions of complex arguments, in which \begin{equation*} \cosh (x \pm iy) = a \pm ib,\ \sinh (x \pm iy) = c \pm id, \end{equation*} and the values of $a, b, c, d$ are tabulated for values of $x$ and of $y$ ranging separately from 0 to 1.5 at intervals of .1. When interpolation is necessary it may be performed in three stages.\index{Interpolation} For example, to find $\cosh (.82 + 1.34i)$: First find $\cosh (.82 + 1.3i)$, by keeping $y$ at 1.3 and interpolating between the entries under $x =.8$ and $x =.9$; next find $\cosh (.82 + 1.4i)$, by keeping $y$ at 1.4 and interpolating between the entries under $x =.8$ and $x =.9$, as before; then by interpolation between $\cosh (.82 + 1.3i)$ and $\cosh (.82 + 1.4i)$ find $\cosh(.82 + 1.34i)$, in which $x$ is kept at .82. The table is available for all values of $y$, however great, by means of the formulas on page~\pageref{period-hyp-funct}: \begin{equation*} \sinh (x + 2i\pi) = \sinh x,\ \cosh (x + 2i\pi) = \cosh x, \text{ etc.} \end{equation*} It does not apply when $x$ is greater than 1.5, but this case seldom occurs in practice. This table can also be used as a complex table of circular functions, for \begin{equation*} \cos (y \pm ix) = a \mp ib,\ \sin (y \pm ix) = d \pm ic; \end{equation*} and, moreover, the exponential function is given by \begin{equation*} \exp (\pm x \pm iy) = a \pm c \pm i(b \pm d), \end{equation*} in which the signs of $c$ and $d$ are to be taken the same as the sign of $x$, and the sign of $i$ on the right is to be the product of the signs of $x$ and of $i$ on the left.\index{Periodicity} Table III gives the values of $v = \gd u$, and of the gudermanian angle $\theta = \dfrac{180^\circ v}{\pi}$, as $u$ changes from 0 to 1 at intervals of .02, from 1 to 2 at intervals of .05, and from 2 to 4 at intervals of .1. In Table IV are given, the values of $\gd u$, $\log \sinh u$, $\log \cosh u$, as $u$ increases from 4 to 6 at intervals of .1, from 6 to 7 at intervals of .2, and from 7 to 9 at intervals of .5. In the rare cases in which more extensive tables are necessary, reference may be made to the tables\footnote{% Gudermann in Crelle's Journal, vols. 6--9, 1831--2 (published separately under the title Theorie der hyperbolischen Functionen, Berlin, 1833). Glaisher in Cambridge Phil.\ Trans., vol.\ 13, 1881. Geipel and Kilgour's Electrical Handbook.}\index{Geipel and Kilgour's Electrical Handbook}\index{Glaisher's exponential tables} of Gudermann, Glaisher, and Geipel and Kilgour. In the first the Gudermanian angle (written $k$) is taken as the independent variable, and increases from 0 to 100 grades at intervals of .01, the corresponding value of $u$ (written $Lk$) being tabulated. In the usual case, in which the table is entered with the value of $u$, it gives by interpolation the value of the gudermanian angle, whose circular functions would then give the hyperbolic functions of $u$.\index{Interpolation} When $u$ is large, this angle is so nearly right that interpolation is not reliable. To remedy this inconvenience Gudermann's second table gives directly $\log\sinh u$, $\log\cosh u$, $\log\tanh u$, to nine figures, for values of $u$ varying by .001 from 2 to 5, and by .01 from 5 to 12.\index{Gudermanian!function} Glaisher has tabulated the values of $e^x$ and $e^{-x}$, to nine significant figures, as $x$ varies by .001 from 0 to .1, by .01 from 0 to 2, by .1 from 0 to 10, and by 1 from 0 to 500. From these the values of $\cosh x$, $\sinh x$ are easily obtained. Geipel and Kilgour's handbook gives the values of $\cosh x$, $\sinh x$, to seven figures, as $x$ varies by .01 from 0 to 4. There are also extensive tables by Forti, Gronau, Vassal, Callet, and Hoüel; and there are four-place tables in Byerly's Fourier Series, and in Wheeler's Trigonometry.% \index{Byerly's Fourier Series, etc.}\index{Callet's Tables}% \index{Forti's Tavoli e teoria}\index{Gronau's!Tafeln}% \index{Vassal's Tables}\index{Wheeler's Trigonometry} In the following tables a dash over a final digit indicates that the number has been increased. \newpage \markright{TABLES} \subsubsection*{} %% RWD Nickalls : %%% empty subsubsection{} command as a hook for \addcontentsline... and for the \label. %%% place this /before/ the addtocontentsline.. and before the \label \addcontentsline{lot}{table}{Table I.---Hyperbolic Functions} \index{Hyperbolic functions!tables of|(} \begin{center} \textsc{Table I.---Hyperbolic Functions.} \label{Table1p1} \\ \medskip\scriptsize \begin{tabular}{r|r|r|r||r|r|r|r} \hline \multicolumn{1}{c|}{$u$} &$ \sinh u. $&$ \cosh u. $&$ \tanh u. $ & \multicolumn{1}{c|}{$u$} &$ \sinh u. $&$ \cosh u. $&$ \tanh u. $ \\ \hline &&&&&&& \\ $ .00 $&$ .0000 $&$ 1.0000 $&$ .0000 $ & $ 1.00 $&$ 1.1752 $&$ 1.543\bar{1} $&$ .7616 $ \\ $ 02 $&$ 0200 $&$ 1.0002 $&$ 0200 $ & $ 1.02 $&$ 1.206\bar{3} $&$ 1.566\bar{9} $&$ 769\bar{9} $ \\ $ 04 $&$ 0400 $&$ 1.0008 $&$ 040\bar{0} $ & $ 1.04 $&$ 1.237\bar{9} $&$ 1.5913 $&$ 777\bar{9} $ \\ $ 06 $&$ 0600 $&$ 1.0018 $&$ 0599 $ & $ 1.06 $&$ 1.270\bar{0} $&$ 1.6164 $&$ 785\bar{7} $ \\ $ 08 $&$ 080\bar{1} $&$ 1.0032 $&$ 0798 $ & $ 1.08 $&$ 1.3025 $&$ 1.6421 $&$ 793\bar{2} $ \\ &&&&&&& \\ $ .10 $&$ .100\bar{2} $&$ 1.0050 $&$ .099\bar{7} $ & $ 1.10 $&$ 1.3356 $&$ 1.6685 $&$ .8005 $ \\ $ 12 $&$ 120\bar{3} $&$ 1.0072 $&$ 1194 $ & $ 1.12 $&$ 1.369\bar{3} $&$ 1.695\bar{6} $&$ 807\bar{6} $ \\ $ 14 $&$ 140\bar{5} $&$ 1.0098 $&$ 139\bar{1} $ & $ 1.14 $&$ 1.403\bar{5} $&$ 1.7233 $&$ 8144 $ \\ $ 16 $&$ 160\bar{7} $&$ 1.0128 $&$ 1586 $ & $ 1.16 $&$ 1.4382 $&$ 1.7517 $&$ 8210 $ \\ $ 18 $&$ 181\bar{0} $&$ 1.0162 $&$ 178\bar{1} $ & $ 1.18 $&$ 1.4735 $&$ 1.7808 $&$ 827\bar{5} $ \\ &&&&&&& \\ $ .20 $&$ .2013 $&$ 1.020\bar{1} $&$ .197\bar{4} $ & $ 1.20 $&$ 1.509\bar{5} $&$ 1.810\bar{7} $&$ .833\bar{7} $ \\ $ 22 $&$ 221\bar{8} $&$ 1.024\bar{3} $&$ 2165 $ & $ 1.22 $&$ 1.546\bar{0} $&$ 1.8412 $&$ 839\bar{7} $ \\ $ 24 $&$ 2423 $&$ 1.0289 $&$ 235\bar{5} $ & $ 1.24 $&$ 1.5831 $&$ 1.872\bar{5} $&$ 845\bar{5} $ \\ $ 26 $&$ 2629 $&$ 1.034\bar{0} $&$ 254\bar{3} $ & $ 1.26 $&$ 1.620\bar{9} $&$ 1.9045 $&$ 851\bar{1} $ \\ $ 28 $&$ 283\bar{7} $&$ 1.0395 $&$ 2729 $ & $ 1.28 $&$ 1.6593 $&$ 1.9373 $&$ 856\bar{5} $ \\ &&&&&&& \\ $ .30 $&$ .3045 $&$ 1.0453 $&$ .2913 $ & $ 1.30 $&$ 1.6984 $&$ 1.9709 $&$ .8617 $ \\ $ 32 $&$ 325\bar{5} $&$ 1.0516 $&$ 3095 $ & $ 1.32 $&$ 1.7381 $&$ 2.005\bar{3} $&$ 8668 $ \\ $ 34 $&$ 3466 $&$ 1.058\bar{4} $&$ 327\bar{5} $ & $ 1.34 $&$ 1.778\bar{6} $&$ 2.0404 $&$ 871\bar{7} $ \\ $ 36 $&$ 3678 $&$ 1.0655 $&$ 3452 $ & $ 1.36 $&$ 1.819\bar{8} $&$ 2.0764 $&$ 876\bar{4} $ \\ $ 38 $&$ 3892 $&$ 1.0731 $&$ 3627 $ & $ 1.38 $&$ 1.861\bar{7} $&$ 2.1132 $&$ 881\bar{0} $ \\ &&&&&&& \\ $ .40 $&$ .410\bar{8} $&$ 1.081\bar{1} $&$ .3799 $ & $ 1.40 $&$ 1.9043 $&$ 2.150\bar{9} $&$ .8854 $ \\ $ 42 $&$ 432\bar{5} $&$ 1.0895 $&$ 3969 $ & $ 1.42 $&$ 1.9477 $&$ 2.1894 $&$ 889\bar{6} $ \\ $ 44 $&$ 4543 $&$ 1.098\bar{4} $&$ 4136 $ & $ 1.44 $&$ 1.991\bar{9} $&$ 2.2288 $&$ 893\bar{7} $ \\ $ 46 $&$ 476\bar{4} $&$ 1.107\bar{7} $&$ 430\bar{1} $ & $ 1.46 $&$ 2.036\bar{9} $&$ 2.269\bar{1} $&$ 897\bar{7} $ \\ $ 48 $&$ 4986 $&$ 1.1174 $&$ 4462 $ & $ 1.48 $&$ 2.082\bar{7} $&$ 2.310\bar{3} $&$ 901\bar{5} $ \\ &&&&&&& \\ $ .50 $&$ .521\bar{1} $&$ 1.1276 $&$ .4621 $ & $ 1.50 $&$ 2.129\bar{3} $&$ 2.3524 $&$ .9051 $ \\ $ 52 $&$ 543\bar{8} $&$ 1.138\bar{3} $&$ 4777 $ & $ 1.52 $&$ 2.176\bar{8} $&$ 2.395\bar{5} $&$ 908\bar{7} $ \\ $ 54 $&$ 5666 $&$ 1.149\bar{4} $&$ 493\bar{0} $ & $ 1.54 $&$ 2.2251 $&$ 2.439\bar{5} $&$ 9121 $ \\ $ 56 $&$ 5897 $&$ 1.1609 $&$ 508\bar{0} $ & $ 1.56 $&$ 2.2743 $&$ 2.484\bar{5} $&$ 9154 $ \\ $ 58 $&$ 613\bar{1} $&$ 1.173\bar{0} $&$ 522\bar{7} $ & $ 1.58 $&$ 2.324\bar{5} $&$ 2.530\bar{5} $&$ 9186 $ \\ &&&&&&& \\ $ .60 $&$ .636\bar{7} $&$ 1.185\bar{5} $&$ .5370 $ & $ 1.60 $&$ 2.375\bar{6} $&$ 2.577\bar{5} $&$ .921\bar{7} $ \\ $ 62 $&$ 660\bar{5} $&$ 1.1984 $&$ 5511 $ & $ 1.62 $&$ 2.427\bar{6} $&$ 2.625\bar{5} $&$ 9246 $ \\ $ 64 $&$ 684\bar{6} $&$ 1.211\bar{9} $&$ 564\bar{9} $ & $ 1.64 $&$ 2.480\bar{6} $&$ 2.674\bar{6} $&$ 927\bar{5} $ \\ $ 66 $&$ 709\bar{0} $&$ 1.2258 $&$ 578\bar{4} $ & $ 1.66 $&$ 2.534\bar{6} $&$ 2.7247 $&$ 9302 $ \\ $ 68 $&$ 7336 $&$ 1.2402 $&$ 5915 $ & $ 1.68 $&$ 2.5896 $&$ 2.776\bar{0} $&$ 932\bar{9} $ \\ &&&&&&& \\ $ .70 $&$ .758\bar{6} $&$ 1.255\bar{2} $&$ .604\bar{4} $ & $ 1.70 $&$ 2.6456 $&$ 2.8283 $&$ .9354 $ \\ $ 72 $&$ 7838 $&$ 1.270\bar{6} $&$ 6169 $ & $ 1.72 $&$ 2.7027 $&$ 2.881\bar{8} $&$ 937\bar{9} $ \\ $ 74 $&$ 8094 $&$ 1.2865 $&$ 6291 $ & $ 1.74 $&$ 2.7609 $&$ 2.9364 $&$ 9402 $ \\ $ 76 $&$ 8353 $&$ 1.303\bar{0} $&$ 641\bar{1} $ & $ 1.76 $&$ 2.820\bar{2} $&$ 2.9922 $&$ 9425 $ \\ $ 78 $&$ 8615 $&$ 1.3199 $&$ 6527 $ & $ 1.78 $&$ 2.8806 $&$ 3.0492 $&$ 944\bar{7} $ \\ &&&&&&& \\ $ .80 $&$ .8881 $&$ 1.3374 $&$ .6640 $ & $ 1.80 $&$ 2.942\bar{2} $&$ 3.107\bar{5} $&$ .9468 $ \\ $ 82 $&$ 9150 $&$ 1.355\bar{5} $&$ 675\bar{1} $ & $ 1.82 $&$ 3.0049 $&$ 3.1669 $&$ 9488 $ \\ $ 84 $&$ 9423 $&$ 1.3740 $&$ 6858 $ & $ 1.84 $&$ 3.068\bar{9} $&$ 3.227\bar{7} $&$ 950\bar{8} $ \\ $ 86 $&$ 970\bar{0} $&$ 1.393\bar{2} $&$ 696\bar{3} $ & $ 1.86 $&$ 3.1340 $&$ 3.2897 $&$ 952\bar{7} $ \\ $ 88 $&$ 998\bar{1} $&$ 1.4128 $&$ 7064 $ & $ 1.88 $&$ 3.200\bar{5} $&$ 3.3530 $&$ 954\bar{5} $ \\ &&&&&&& \\ $ .90 $&$ 1.0265 $&$ 1.433\bar{1} $&$ .716\bar{3} $ & $ 1.90 $&$ 3.268\bar{2} $&$ 3.4177 $&$ .9562 $ \\ $ 92 $&$ 1.0554 $&$ 1.4539 $&$ 725\bar{9} $ & $ 1.92 $&$ 3.337\bar{2} $&$ 3.483\bar{8} $&$ 9579 $ \\ $ 94 $&$ 1.084\bar{7} $&$ 1.4753 $&$ 7352 $ & $ 1.94 $&$ 3.4075 $&$ 3.5512 $&$ 9595 $ \\ $ 96 $&$ 1.1144 $&$ 1.497\bar{3} $&$ 744\bar{3} $ & $ 1.96 $&$ 3.4792 $&$ 3.620\bar{1} $&$ 961\bar{1} $ \\ $ 98 $&$ 1.144\bar{6} $&$ 1.519\bar{9} $&$ 753\bar{1} $ & $ 1.98 $&$ 3.5523 $&$ 3.6904 $&$ 962\bar{6} $ \\ &&&&&&& \\ \hline \end{tabular} \end{center} \normalsize \newpage \subsubsection*{} %% RWD Nickalls : empty subsubsection{} command as a hook for \label \begin{center} \textsc{Table I.---Hyperbolic Functions} (\emph{continued})% \label{Table1p2} \\ \medskip\scriptsize \begin{tabular}{r|r|r|r||r|r|r|r} \hline \multicolumn{1}{c|}{$u$} &$ \sinh u. $&$ \cosh u. $&$ \tanh u. $ & \multicolumn{1}{c|}{$u$} &$ \sinh u. $&$ \cosh u. $&$ \tanh u. $ \\ \hline &&&&&&& \\ $ 2.00 $&$ 3.626\bar{9} $&$ 3.762\bar{2} $&$ .9640 $ & $ 3.00 $&$ 10.017\bar{9} $&$ 10.067\bar{7} $&$ .99505 $ \\ $ 2.02 $&$ 3.7028 $&$ 3.835\bar{5} $&$ 9654 $ & $ 3.02 $&$ 10.2212 $&$ 10.2700 $&$ 99524 $ \\ $ 2.04 $&$ 3.780\bar{3} $&$ 3.9103 $&$ 9667 $ & $ 3.04 $&$ 10.4287 $&$ 10.4765 $&$ 99543 $ \\ $ 2.06 $&$ 3.859\bar{3} $&$ 3.9867 $&$ 9680 $ & $ 3.06 $&$ 10.6403 $&$ 10.6872 $&$ 99561 $ \\ $ 2.08 $&$ 3.9398 $&$ 4.0647 $&$ 969\bar{3} $ & $ 3.08 $&$ 10.8562 $&$ 10.902\bar{2} $&$ 99578 $ \\ &&&&&&& \\ $ 2.10 $&$ 4.021\bar{9} $&$ 4.1443 $&$ .970\bar{5} $ & $ 3.10 $&$ 11.076\bar{5} $&$ 11.1215 $&$ .99594 $ \\ $ 2.12 $&$ 4.1055 $&$ 4.225\bar{6} $&$ 971\bar{6} $ & $ 3.12 $&$ 11.3011 $&$ 11.345\bar{3} $&$ 99610 $ \\ $ 2.14 $&$ 4.190\bar{9} $&$ 4.3085 $&$ 972\bar{7} $ & $ 3.14 $&$ 11.530\bar{3} $&$ 11.573\bar{6} $&$ 99626 $ \\ $ 2.16 $&$ 4.2779 $&$ 4.3932 $&$ 9737 $ & $ 3.16 $&$ 11.764\bar{1} $&$ 11.8065 $&$ 99640 $ \\ $ 2.18 $&$ 4.3666 $&$ 4.479\bar{7} $&$ 974\bar{8} $ & $ 3.18 $&$ 12.002\bar{6} $&$ 12.044\bar{2} $&$ 99654 $ \\ &&&&&&& \\ $ 2.20 $&$ 4.4571 $&$ 4.5679 $&$ .9757 $ & $ 3.20 $&$ 12.245\bar{9} $&$ 12.2866 $&$ .99668 $ \\ $ 2.22 $&$ 4.549\bar{4} $&$ 4.658\bar{0} $&$ 976\bar{7} $ & $ 3.22 $&$ 12.494\bar{1} $&$ 12.5340 $&$ 99681 $ \\ $ 2.24 $&$ 4.6434 $&$ 4.749\bar{9} $&$ 977\bar{6} $ & $ 3.24 $&$ 12.747\bar{3} $&$ 12.7864 $&$ 99693 $ \\ $ 2.26 $&$ 4.739\bar{4} $&$ 4.8437 $&$ 978\bar{5} $ & $ 3.26 $&$ 13.005\bar{6} $&$ 13.044\bar{0} $&$ 99705 $ \\ $ 2.28 $&$ 4.837\bar{2} $&$ 4.939\bar{5} $&$ 979\bar{3} $ & $ 3.28 $&$ 13.269\bar{1} $&$ 13.3067 $&$ 99717 $ \\ &&&&&&& \\ $ 2.30 $&$ 4.937\bar{0} $&$ 5.0372 $&$ .980\bar{1} $ & $ 3.30 $&$ 13.537\bar{9} $&$ 13.574\bar{8} $&$ .99728 $ \\ $ 2.32 $&$ 5.0387 $&$ 5.137\bar{0} $&$ 980\bar{9} $ & $ 3.32 $&$ 13.812\bar{1} $&$ 13.848\bar{3} $&$ 99738 $ \\ $ 2.34 $&$ 5.1425 $&$ 5.238\bar{8} $&$ 9816 $ & $ 3.34 $&$ 14.0918 $&$ 14.127\bar{3} $&$ 99749 $ \\ $ 2.36 $&$ 5.248\bar{3} $&$ 5.342\bar{7} $&$ 9823 $ & $ 3.36 $&$ 14.3772 $&$ 14.412\bar{0} $&$ 99758 $ \\ $ 2.38 $&$ 5.356\bar{2} $&$ 5.4487 $&$ 9830 $ & $ 3.38 $&$ 14.668\bar{4} $&$ 14.7024 $&$ 99768 $ \\ &&&&&&& \\ $ 2.40 $&$ 5.4662 $&$ 5.5569 $&$ .983\bar{7} $ & $ 3.40 $&$ 14.965\bar{4} $&$ 14.9987 $&$ .99777 $ \\ $ 2.42 $&$ 5.5785 $&$ 5.667\bar{4} $&$ 9843 $ & $ 3.42 $&$ 15.268\bar{4} $&$ 15.301\bar{1} $&$ 99786 $ \\ $ 2.44 $&$ 5.6929 $&$ 5.7801 $&$ 9849 $ & $ 3.44 $&$ 15.5774 $&$ 15.6095 $&$ 99794 $ \\ $ 2.46 $&$ 5.809\bar{7} $&$ 5.8951 $&$ 9855 $ & $ 3.46 $&$ 15.892\bar{8} $&$ 15.9242 $&$ 99802 $ \\ $ 2.48 $&$ 5.928\bar{8} $&$ 6.0125 $&$ 986\bar{1} $ & $ 3.48 $&$ 16.2144 $&$ 16.245\bar{3} $&$ 99810 $ \\ &&&&&&& \\ $ 2.50 $&$ 6.0502 $&$ 6.132\bar{3} $&$ .9866 $ & $ 3.50 $&$ 16.5426 $&$ 16.5728 $&$ .99817 $ \\ $ 2.52 $&$ 6.174\bar{1} $&$ 6.2545 $&$ 9871 $ & $ 3.52 $&$ 16.8774 $&$ 16.9070 $&$ 99824 $ \\ $ 2.54 $&$ 6.3004 $&$ 6.379\bar{3} $&$ 9876 $ & $ 3.54 $&$ 17.219\bar{0} $&$ 17.248\bar{0} $&$ 99831 $ \\ $ 2.56 $&$ 6.429\bar{3} $&$ 6.506\bar{6} $&$ 9881 $ & $ 3.56 $&$ 17.567\bar{4} $&$ 17.5958 $&$ 99831 $ \\ $ 2.58 $&$ 6.560\bar{7} $&$ 6.6364 $&$ 988\bar{6} $ & $ 3.58 $&$ 17.9228 $&$ 17.9507 $&$ 99844 $ \\ &&&&&&& \\ $ 2.60 $&$ 6.6947 $&$ 6.7690 $&$ .9890 $ & $ 3.60 $&$ 18.2854 $&$ 18.312\bar{8} $&$ .99850 $ \\ $ 2.62 $&$ 6.831\bar{5} $&$ 6.904\bar{3} $&$ 989\bar{5} $ & $ 3.62 $&$ 18.655\bar{4} $&$ 18.682\bar{2} $&$ 99856 $ \\ $ 2.64 $&$ 6.9709 $&$ 7.042\bar{3} $&$ 989\bar{9} $ & $ 3.64 $&$ 19.032\bar{8} $&$ 19.0590 $&$ 99862 $ \\ $ 2.66 $&$ 7.113\bar{2} $&$ 7.183\bar{2} $&$ 990\bar{3} $ & $ 3.66 $&$ 19.4178 $&$ 19.4435 $&$ 99867 $ \\ $ 2.68 $&$ 7.258\bar{3} $&$ 7.3268 $&$ 9906 $ & $ 3.68 $&$ 19.810\bar{6} $&$ 19.8358 $&$ 99872 $ \\ &&&&&&& \\ $ 2.70 $&$ 7.406\bar{3} $&$ 7.473\bar{5} $&$ .9910 $ & $ 3.70 $&$ 20.211\bar{3} $&$ 20.2360 $&$ .99877 $ \\ $ 2.72 $&$ 7.5572 $&$ 7.623\bar{1} $&$ 991\bar{4} $ & $ 3.72 $&$ 20.620\bar{1} $&$ 20.6443 $&$ 99882 $ \\ $ 2.74 $&$ 7.7112 $&$ 7.775\bar{8} $&$ 991\bar{7} $ & $ 3.74 $&$ 21.0371 $&$ 21.060\bar{9} $&$ 99887 $ \\ $ 2.76 $&$ 7.868\bar{3} $&$ 7.931\bar{6} $&$ 9920 $ & $ 3.76 $&$ 21.462\bar{6} $&$ 21.485\bar{9} $&$ 99891 $ \\ $ 2.78 $&$ 8.028\bar{5} $&$ 8.0905 $&$ 9923 $ & $ 3.78 $&$ 21.8966 $&$ 21.9194 $&$ 9989\bar{6} $ \\ &&&&&&& \\ $ 2.80 $&$ 8.1919 $&$ 8.2527 $&$ .9926 $ & $ 3.80 $&$ 22.3394 $&$ 22.361\bar{8} $&$ .9990\bar{0} $ \\ $ 2.82 $&$ 8.3586 $&$ 8.4182 $&$ 9929 $ & $ 3.82 $&$ 22.7911 $&$ 22.813\bar{1} $&$ 9990\bar{4} $ \\ $ 2.84 $&$ 8.528\bar{7} $&$ 8.587\bar{1} $&$ 993\bar{2} $ & $ 3.84 $&$ 23.252\bar{0} $&$ 23.273\bar{5} $&$ 99907 $ \\ $ 2.86 $&$ 8.7021 $&$ 8.759\bar{4} $&$ 993\bar{5} $ & $ 3.86 $&$ 23.7221 $&$ 23.7432 $&$ 99911 $ \\ $ 2.88 $&$ 8.879\bar{1} $&$ 8.9352 $&$ 9937 $ & $ 3.88 $&$ 24.2018 $&$ 24.2224 $&$ 9991\bar{5} $ \\ &&&&&&& \\ $ 2.90 $&$ 9.059\bar{6} $&$ 9.114\bar{6} $&$ .994\bar{0} $ & $ 3.90 $&$ 24.6911 $&$ 24.7113 $&$ .99918 $ \\ $ 2.92 $&$ 9.243\bar{7} $&$ 9.2976 $&$ 994\bar{2} $ & $ 3.92 $&$ 25.1903 $&$ 25.2101 $&$ 99921 $ \\ $ 2.94 $&$ 9.431\bar{5} $&$ 9.484\bar{4} $&$ 9944 $ & $ 3.94 $&$ 25.699\bar{6} $&$ 25.7190 $&$ 99924 $ \\ $ 2.96 $&$ 9.623\bar{1} $&$ 9.674\bar{9} $&$ 994\bar{7} $ & $ 3.96 $&$ 26.2191 $&$ 26.238\bar{2} $&$ 99927 $ \\ $ 2.98 $&$ 9.8185 $&$ 9.8693 $&$ 994\bar{9} $ & $ 3.98 $&$ 26.749\bar{2} $&$ 26.767\bar{9} $&$ 99930 $ \\ &&&&&&& \\ \hline \end{tabular} \end{center} \normalsize \newpage \subsubsection*{} %% RWD Nickalls : empty subsubsection{} command as a hook for the addcontentsline... \begin{center} \addcontentsline{lot}{table}{Table II.---Values of $\cosh(x + iy)$ and $\sinh (x + iy)$} \textsc{Table II.---Values of $\cosh(x + iy)$ and $\sinh(x + iy)$.}% \index{Complex numbers!Tables} \\ \medskip \footnotesize \begin{tabular}{r| rc| cr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = 0 $} & \multicolumn{4}{|c}{$ x = .1 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&&& \\ 0 &$ 1.0000 $&$ 0000 $&$ 0000 $&$ .0000 $ &$ 1.0050 $&$ .00000 $&$ .1001\bar{7} $&$ .0000 $ \\ .1 &$ 0.9950 $& '' & '' &$ 0998 $ &$ 1.000\bar{0} $&$ 01000 $&$ 09967 $&$ 1003 $ \\ .2 &$ 0.980\bar{1} $& '' & '' &$ 198\bar{7} $ &$ 0.9850 $&$ 0199\bar{0}$&$ 09817 $&$ 199\bar{7} $ \\ .3 &$ 0.9553 $& '' & '' &$ 2955 $ &$ 0.9601 $&$ 02960 $&$ 0957\bar{0} $&$ 297\bar{0} $ \\ &&&&&&&& \\ .4 &$ .921\bar{1} $& '' & '' &$ .3894 $ &$ .925\bar{7} $&$ .03901 $&$ .09226 $&$ .3914 $ \\ .5 &$ 8776 $& '' & '' &$ 4794 $ &$ 882\bar{0} $&$ 04802 $&$ 0879\bar{1} $&$ 4818 $ \\ .6 &$ 8253 $& '' & '' &$ 5646 $ &$ 829\bar{5} $&$ 05656 $&$ 08267 $&$ 567\bar{5} $ \\ .7 &$ 7648 $& '' & '' &$ 6442 $ &$ 768\bar{7} $&$ 06453 $&$ 07661 $&$ 6474 $ \\ &&&&&&&& \\ .8 &$ .6967 $& '' & '' &$ .717\bar{4} $ &$ .700\bar{2} $&$ .0718\bar{6}$&$ .0697\bar{9} $&$ .7800 $ \\ .9 &$ 6216 $& '' & '' &$ 7833 $ &$ 624\bar{7} $&$ 0784\bar{7}$&$ 0622\bar{7} $&$ 7872 $ \\ 1.0 &$ 5403 $& '' & '' &$ 841\bar{5} $ &$ 5430 $&$ 08429 $&$ 05412 $&$ 845\bar{7} $ \\ 1.1 &$ 4536 $& '' & '' &$ 8912 $ &$ 455\bar{9} $&$ 08927 $&$ 04544 $&$ 895\bar{7} $ \\ &&&&&&&& \\ 1.2 &$ .362\bar{4} $& '' & '' &$ .9320 $ &$ .364\bar{2} $&$ .09336 $&$ .0363\bar{0} $&$0.936\bar{7} $ \\ 1.3 &$ 2675 $& '' & '' &$ 963\bar{6} $ &$ 268\bar{8} $&$ 0965\bar{2}$&$ 0268\bar{0} $&$0.968\bar{4} $ \\ 1.4 &$ 170\bar{0} $& '' & '' &$ 9854 $ &$ 1708 $&$ 09871 $&$ 0170\bar{3} $&$0.990\bar{4} $ \\ 1.5 &$ 0707 $& '' & '' &$ 997\bar{5} $ &$ 0711 $&$ 0999\bar{2}$&$ 0070\bar{9} $&$1.002\bar{5} $ \\ &&&&&&&& \\ $\tfrac{1}{2}\pi $ &$ 0000 $& '' & '' &$1.0000 $ &$ 0000 $&$ 1001\bar{7}$&$ 00000 $&$1.0050 $ \\ &&&&&&&& \\ \hline \end{tabular} \\ \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = .2 $} & \multicolumn{4}{|c}{$ x = .3 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&&& \\ 0 &$ 1.020\bar{1} $&$ .0000 $&$ .2013 $&$ .0000 $ &$ 1.0453 $&$ .0000 $&$ .3045 $&$ .0000 $ \\ .1 &$ 1.015\bar{0} $&$ 0201 $&$ 2003 $&$ 1018 $ &$ 1.040\bar{1} $&$ 0304 $&$ 303\bar{0} $&$ 1044 $ \\ .2 &$ 0.9997 $&$ 0400 $&$ 1973 $&$ 202\bar{7} $ &$ 1.024\bar{5} $&$ 0605 $&$ 298\bar{5} $&$ 207\bar{7} $ \\ .3 &$ 0.9745 $&$ 0595 $&$ 1923 $&$ 3014 $ &$ 9987 $&$ 090\bar{0} $&$ 2909 $&$ 3089 $ \\ &&&&&&&& \\ .4 &$ .9395 $&$ .0784 $&$ .1854 $&$ .3972 $ &$ .9628 $&$ .1186 $&$ .280\bar{5} $&$ .407\bar{1} $ \\ .5 &$ 895\bar{2} $&$ 0965 $&$ 176\bar{7} $&$ 4890 $ &$ 917\bar{4} $&$ 146\bar{0} $&$ 267\bar{2} $&$ 501\bar{2} $ \\ .6 &$ 8419 $&$ 113\bar{7} $&$ 166\bar{2} $&$ 576\bar{0} $ &$ 8687 $&$ 1719 $&$ 2513 $&$ 590\bar{3} $ \\ .7 &$ 780\bar{2} $&$ 1297 $&$ 154\bar{0} $&$ 6571 $ &$ 7995 $&$ 196\bar{2} $&$ 2329 $&$ 6734 $ \\ &&&&&&&& \\ .8 &$ .710\bar{7} $&$ .1444 $&$ .140\bar{3} $&$ .731\bar{8} $ &$ .728\bar{3} $&$ .2184 $&$ .212\bar{2} $&$ .7498 $ \\ .9 &$ 634\bar{1} $&$ 1577 $&$ 125\bar{2} $&$ 7990 $ &$ 649\bar{8} $&$ 2385 $&$ 189\bar{3} $&$ 8188 $ \\ 1.0 &$ 5511 $&$ 1694 $&$ 108\bar{8} $&$ 858\bar{4} $ &$ 5648 $&$ 2562 $&$ 1645 $&$ 8796 $ \\ 1.1 &$ 4627 $&$ 179\bar{5} $&$ 0913 $&$ 909\bar{1} $ &$ 474\bar{2} $&$ 2714 $&$ 1381 $&$ 9316 $ \\ &&&&&&&& \\ 1.2 &$ .3696 $&$ .187\bar{7} $&$ .073\bar{0} $&$0.9507 $ &$ .378\bar{8} $&$ .2838 $&$ .1103 $&$0.974\bar{3} $ \\ 1.3 &$ 272\bar{9} $&$ 1940 $&$ 053\bar{9} $&$0.982\bar{9} $ &$ 2796 $&$ 2934 $&$ 081\bar{5} $&$1.0072 $ \\ 1.4 &$ 173\bar{4} $&$ 1984 $&$ 0342 $&$1.0052 $ &$ 177\bar{7} $&$ 3001 $&$ 051\bar{8} $&$1.0301 $ \\ 1.5 &$ 072\bar{2} $&$ 2008 $&$ 0142 $&$1.0175 $ &$ 0739 $&$ 303\bar{8} $&$ 0215 $&$1.042\bar{7} $ \\ &&&&&&&& \\ $\tfrac{1}{2}\pi $ &$ 0000 $&$ 2013 $&$ 0000 $&$1.020\bar{1} $ &$ 0000 $&$ 3045 $&$ 0000 $&$1.0453 $ \\ &&&&&&&& \\ \hline \end{tabular} \normalsize \newpage \subsubsection*{} %% RWD Nickalls : empty subsubsection{} command as a hook for the addcontentsline... \textsc{Table II.---Values of $\cosh(x + iy)$ and $\sinh(x + iy)$.} (\emph{continued}) \\ \footnotesize \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = .4 $} & \multicolumn{4}{|c}{$ x = .5 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&& \\ 0 &$ 1.081\bar{1} $&$ .0000 $&$ .410\bar{8} $&$ .0000 $ &$ 1.1276 $&$ .0000 $&$ .521\bar{1} $&$ .0000 $ \\ .1 &$ 1.0756 $&$ 0410 $&$ 408\bar{7} $&$ 1079 $ &$ 1.122\bar{0} $&$ 0520 $&$ 518\bar{5} $&$ 1126 $ \\ .2 &$ 1.0595 $&$ 0816 $&$ 402\bar{6} $&$ 214\bar{8}$ &$ 1.1051 $&$ 1025 $&$ 5107 $&$ 2240 $ \\ .3 &$ 1.032\bar{8} $&$ 121\bar{4} $&$ 3924 $&$ 319\bar{5}$ &$ 1.077\bar{3} $&$ 154\bar{0} $&$ 4978 $&$ 3332 $ \\ &&&&&&& \\ .4 &$ .9957 $&$ .160\bar{0} $&$ .3783 $&$ .421\bar{0}$ &$ 1.0386 $&$ .2029 $&$ .480\bar{0} $&$ .4391 $ \\ .5 &$ 9487 $&$ 1969 $&$ 360\bar{5} $&$ 518\bar{3}$ &$ 0.989\bar{6} $&$ 2498 $&$ 4573 $&$ 5406 $ \\ .6 &$ 8922 $&$ 2319 $&$ 3390 $&$ 6104 $ &$ 0.9306 $&$ 2942 $&$ 430\bar{1} $&$ 6367 $ \\ .7 &$ 8268 $&$ 2646 $&$ 314\bar{2} $&$ 6964 $ &$ 0.8624 $&$ 335\bar{7} $&$ 398\bar{6} $&$ 7264 $ \\ &&&&&&& \\ .8 &$ .753\bar{2} $&$ .2947 $&$ .286\bar{2} $&$ .7755 $ &$ .7856 $&$ .3738 $&$ .363\bar{1} $&$0.8089 $ \\ .9 &$ 672\bar{0} $&$ 3218 $&$ 2553 $&$ 8468 $ &$ 7009 $&$ 408\bar{2} $&$ 3239 $&$0.8833 $ \\ 1.0 &$ 5841 $&$ 3456 $&$ 2219 $&$ 909\bar{7}$ &$ 609\bar{3} $&$ 438\bar{5} $&$ 2815 $&$0.948\bar{9}$ \\ 1.1 &$ 4904 $&$ 366\bar{1} $&$ 1863 $&$ 963\bar{5}$ &$ 511\bar{5} $&$ 4644 $&$ 236\bar{4} $&$1.005\bar{0}$ \\ &&&&&&& \\ 1.2 &$ .3917 $&$ .328\bar{9} $&$ .1488 $&$1.0076 $ &$ .4056 $&$ .485\bar{7} $&$ .1888 $&$1.051\bar{0}$ \\ 1.3 &$ 289\bar{2} $&$ 395\bar{8} $&$ 109\bar{9} $&$1.041\bar{7}$ &$ 3016 $&$ 5021 $&$ 139\bar{4} $&$1.0865 $ \\ 1.4 &$ 183\bar{8} $&$ 404\bar{8} $&$ 0698 $&$1.0653 $ &$ 191\bar{7} $&$ 5135 $&$ 088\bar{6} $&$1.1163 $ \\ 1.5 &$ 076\bar{5} $&$ 4097 $&$ 029\bar{1} $&$1.078\bar{4}$ &$ 079\bar{8} $&$ 519\bar{8} $&$ 036\bar{9} $&$1.124\bar{8}$ \\ &&&&&&& \\ $ \tfrac{1}{2}\pi$ &$ 0000 $&$ 410\bar{8} $&$ 0000 $&$1.081\bar{1}$ &$ 0000 $&$ 521\bar{1} $&$ 0000 $&$1.1276 $ \\ &&&&&&&& \\ \hline \end{tabular} \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = .6 $} & \multicolumn{4}{|c}{$ x = .7 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&& \\ 0 &$ 1.185\bar{5} $&$ .0000 $&$ .636\bar{7} $&$ .0000 $ &$ 1.2552 $&$ .0000 $&$ .758\bar{6} $&$ .0000 $ \\ .1 &$ 1.1795 $&$ 063\bar{6} $&$ 633\bar{5} $&$ 1183 $ &$ 1.248\bar{9} $&$ 0757 $&$ 754\bar{8} $&$ 1253 $ \\ .2 &$ 1.161\bar{8} $&$ 126\bar{5} $&$ 624\bar{0} $&$ 2355 $ &$ 1.2301 $&$ 1542 $&$ 743\bar{5} $&$ 249\bar{4}$ \\ .3 &$ 1.132\bar{5} $&$ 1881 $&$ 6082 $&$ 3503 $ &$ 1.1991 $&$ 224\bar{2} $&$ 7247 $&$ 3709 $ \\ &&&&&&& \\ .4 &$ 1.0918 $&$ .2479 $&$ .5864 $&$ .461\bar{7}$ &$ 1.156\bar{1} $&$ .2954 $&$ .6987 $&$ .488\bar{8}$ \\ .5 &$ 1.0403 $&$ 3052 $&$ 5587 $&$ 5684 $ &$ 1.1015 $&$ 363\bar{7} $&$ 6657 $&$ 601\bar{8}$ \\ .6 &$ 0.9784 $&$ 395\bar{5} $&$ 525\bar{5} $&$ 669\bar{4}$ &$ 1.0359 $&$ 4253 $&$ 626\bar{1} $&$ 7087 $ \\ .7 &$ 0.906\bar{7} $&$ 4101 $&$ 4869 $&$ 763\bar{7}$ &$ 0.960\bar{0} $&$ 488\bar{7} $&$ 580\bar{2} $&$ 8086 $ \\ &&&&&&& \\ .8 &$ .8259 $&$ .4567 $&$ .443\bar{6} $&$0.8504 $ &$ .874\bar{5} $&$ .544\bar{2} $&$ .5285 $&$0.9004 $ \\ .9 &$ 736\bar{9} $&$ 4987 $&$ 3957 $&$0.9286 $ &$ 7802 $&$ 5942 $&$ 4715 $&$0.9832 $ \\ 1.0 &$ 6405 $&$ 5357 $&$ 344\bar{0} $&$0.9975 $ &$ 678\bar{2} $&$ 6383 $&$ 409\bar{9} $&$1.056\bar{2}$ \\ 1.1 &$ 5377 $&$ 567\bar{4} $&$ 288\bar{8} $&$1.056\bar{5}$ &$ 5693 $&$ 6760 $&$ 344\bar{1} $&$1.1186 $ \\ &&&&&&& \\ 1.2 &$ .429\bar{6} $&$ .593\bar{4} $&$ .230\bar{7} $&$1.104\bar{9}$ &$ .4548 $&$ .7070 $&$ .274\bar{9} $&$1.169\bar{9}$ \\ 1.3 &$ 3171 $&$ 613\bar{5} $&$ 1703 $&$1.1422 $ &$ 335\bar{8} $&$ 7309 $&$ 2029 $&$1.2094 $ \\ 1.4 &$ 201\bar{5} $&$ 627\bar{4} $&$ 1082 $&$1.1682 $ &$ 2133 $&$ 7475 $&$ 1289 $&$1.2369 $ \\ 1.5 &$ 083\bar{9} $&$ 635\bar{1} $&$ 0450 $&$1.182\bar{5}$ &$ 088\bar{8} $&$ 756\bar{7} $&$ 053\bar{7} $&$1.2520 $ \\ &&&&&&& \\ $ \tfrac{1}{2}\pi$ &$ 0000 $&$ 636\bar{7} $&$ 0000 $&$1.185\bar{5}$ &$ 0000 $&$ 7586 $&$ 0000 $&$1.2552 $ \\ &&&&&&&& \\ \hline \end{tabular} \normalsize \newpage \subsubsection*{} %% RWD Nickalls : empty subsubsection{} command as a hook for the addcontentsline... \textsc{Table II.---Values of $\cosh(x + iy)$ and $\sinh(x + iy)$.} (\emph{continued}) \\ \footnotesize \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = .8 $} & \multicolumn{4}{|c}{$ x = .9 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&& \\ 0 &$ 1.3374 $&$ .0000 $&$ .8881 $&$ .0000 $ &$ 1.433\bar{1}$&$ .0000 $&$ 1.0265 $&$ .0000 $ \\ .1 &$ 1.330\bar{8}$&$ 088\bar{7} $&$ 883\bar{7}$&$ 1335 $ &$ 1.4259 $&$ 102\bar{5} $&$ 1.021\bar{4}$&$ 143\bar{1}$ \\ .2 &$ 1.3108 $&$ 1764 $&$ 8704 $&$ 2657 $ &$ 1.4045 $&$ 2039 $&$ 1.006\bar{1}$&$ 2847 $ \\ .3 &$ 1.2776 $&$ 262\bar{5} $&$ 8484 $&$ 3952 $ &$ 1.3691 $&$ 303\bar{4} $&$ 0.980\bar{7}$&$ 4235 $ \\ &&&&&&&& \\ .4 &$ 1.231\bar{9}$&$ .3458 $&$ .8180 $&$ .5208 $ &$ 1.320\bar{0}$&$ .3997 $&$ .945\bar{5}$&$ .558\bar{1}$ \\ .5 &$ 1.173\bar{7}$&$ 425\bar{8} $&$ 779\bar{4}$&$ 641\bar{2}$ &$ 1.257\bar{7}$&$ 4921 $&$ 9008 $&$ 687\bar{1}$ \\ .6 &$ 1.1038 $&$ 501\bar{5} $&$ 733\bar{0}$&$ 755\bar{2}$ &$ 1.182\bar{8}$&$ 5796 $&$ 8472 $&$ 809\bar{2}$ \\ .7 &$ 1.0229 $&$ 5721 $&$ 679\bar{3}$&$ 861\bar{6}$ &$ 1.096\bar{1}$&$ 661\bar{3} $&$ 7851 $&$ 9232 $ \\ &&&&&&&& \\ .8 &$ .931\bar{8}$&$ .637\bar{1} $&$ .618\bar{8}$&$0.9595 $ &$ .9984 $&$ .736\bar{4} $&$ .715\bar{2}$&$1.0280 $ \\ .9 &$ 831\bar{4}$&$ 695\bar{7} $&$ 552\bar{1}$&$1.0476 $ &$ 8908 $&$ 804\bar{1} $&$ 638\bar{1}$&$1.1226 $ \\ 1.0 &$ 7226 $&$ 7472 $&$ 4798 $&$1.1254 $ &$ 7743 $&$ 8638 $&$ 5546 $&$1.205\bar{9}$ \\ 1.1 &$ 606\bar{7}$&$ 791\bar{5} $&$ 4028 $&$1.1919 $ &$ 6500 $&$ 9148 $&$ 4656 $&$1.277\bar{2}$ \\ &&&&&&&& \\ 1.2 &$ .4846 $&$ .827\bar{8} $&$ .3218 $&$1.2465 $ &$ .519\bar{3}$&$0.956\bar{8} $&$ .372\bar{0}$&$1.335\bar{7}$ \\ 1.3 &$ 357\bar{8}$&$ 8557 $&$ 237\bar{6}$&$1.288\bar{7}$ &$ 383\bar{4}$&$0.9891 $&$ 274\bar{6}$&$1.380\bar{9}$ \\ 1.4 &$ 2273 $&$ 875\bar{2} $&$ 151\bar{0}$&$1.3180 $ &$ 2436 $&$1.0124 $&$ 1745 $&$1.4122 $ \\ 1.5 &$ 0946 $&$ 885\bar{9} $&$ 0628 $&$1.334\bar{1}$ &$ 101\bar{4}$&$1.0239 $&$ 0726 $&$1.429\bar{5}$ \\ &&&&&&&& \\ $\tfrac{1}{2} \pi$ &$ 0000 $&$ .8881 $&$ 0000 $&$1.3374 $ &$ 0000 $&$1.0265 $&$ 0000 $&$1.433\bar{1}$ \\ &&&&&&&& \\ \hline \end{tabular} \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = 1.0 $} & \multicolumn{4}{|c}{$ x = 1.1 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&& \\ 0 &$1.543\bar{1} $&$ .0000 $&$1.1752 $&$ .0000 $ &$1.6685 $&$ .0000 $&$1.3356 $&$ .0000 $ \\ .1 &$1.535\bar{4} $&$ 1173 $&$1.1693 $&$ 154\bar{1}$ &$1.660\bar{2} $&$ 1333 $&$1.329\bar{0} $&$ 1666 $ \\ .2 &$1.5123 $&$ 2335 $&$1.1518 $&$ 306\bar{6}$ &$1.635\bar{3} $&$ 2654 $&$1.3090 $&$ 331\bar{5}$ \\ .3 &$1.474\bar{2} $&$ 347\bar{3}$&$1.1227 $&$ 4560 $ &$1.594\bar{0} $&$ 3946 $&$1.276\bar{0} $&$ 493\bar{1}$ \\ &&&&&&&& \\ .4 &$1.421\bar{3} $&$ 457\bar{6}$&$1.0824 $&$ .6009 $ &$1.5368 $&$ 5201 $&$1.2302 $&$0.649\bar{8}$ \\ .5 &$1.354\bar{2} $&$ 5634 $&$1.031\bar{4} $&$ 739\bar{8}$ &$1.464\bar{3} $&$ 6403 $&$1.1721 $&$0.7999 $ \\ .6 &$1.273\bar{6} $&$ 663\bar{6}$&$0.9699 $&$ 871\bar{8}$ &$1.377\bar{1} $&$ 754\bar{2}$&$1.102\bar{4} $&$0.9421 $ \\ .7 &$1.1802 $&$ 757\bar{1}$&$0.8988 $&$ 994\bar{1}$ &$1.276\bar{2} $&$ 8604 $&$1.021\bar{6} $&$1.074\bar{9}$ \\ &&&&&&&& \\ .8 &$1.075\bar{1} $&$0.8430 $&$ .818\bar{8} $&$1.1069 $ &$1.162\bar{5} $&$0.9581 $&$ .930\bar{6} $&$1.1969 $ \\ .9 &$0.9592 $&$0.920\bar{6}$&$ 7305 $&$1.2087 $ &$1.037\bar{2} $&$1.0462 $&$ 8302 $&$1.3070 $ \\ 1.0 &$0.8337 $&$0.9889 $&$ 635\bar{0} $&$1.298\bar{5}$ &$0.9015 $&$1.1239 $&$ 721\bar{7} $&$1.4040 $ \\ 1.1 &$0.6999 $&$1.0473 $&$ 533\bar{1} $&$1.375\bar{2}$ &$0.7568 $&$1.1903 $&$ 6058 $&$1.487\bar{0}$ \\ &&&&&&&& \\ 1.2 &$ .559\bar{2} $&$1.0953 $&$ .4258 $&$1.4382 $ &$ .6046 $&$1.244\bar{9} $&$ .484\bar{0} $&$1.5551 $ \\ 1.3 &$ 5128 $&$1.132\bar{4} $&$ 314\bar{4} $&$1.486\bar{8}$ &$ 4463 $&$1.287\bar{0} $&$ 357\bar{5} $&$1.6077 $ \\ 1.4 &$ 262\bar{3} $&$1.158\bar{1} $&$ 199\bar{8} $&$1.5213 $ &$ 2836 $&$1.3162 $&$ 2270 $&$1.6442 $ \\ 1.5 &$ 109\bar{2} $&$1.172\bar{3} $&$ 0831 $&$1.5392 $ &$ 1180 $&$1.332\bar{3} $&$ 094\bar{5} $&$1.6643 $ \\ &&&&&&&& \\ $\tfrac{1}{2} \pi$ &$ 0000 $&$1.1752 $&$ 0000 $&$1.543\bar{1}$ &$ .0000 $&$1.3356 $&$ .0000 $&$1.6685 $ \\ &&&&&&&& \\ \hline \end{tabular} \normalsize \newpage \subsubsection*{} %% RWD Nickalls : empty subsubsection{} command as a hook for the addcontentsline... \textsc{Table II.---Values of $\cosh(x + iy)$ and $\sinh(x + iy)$.} (\emph{continued}) \\ \footnotesize \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = 1.2 $} & \multicolumn{4}{|c}{$ x = 1.3 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&& \\ 0 &$1.810\bar{7} $&$ .0000 $&$1.509\bar{5}$&$ .0000 $ &$1.9709 $&$ 0000 $&$1.698\bar{4}$&$ .0000 $ \\ .1 &$1.8016 $&$ 150\bar{7}$&$1.5019 $&$ 180\bar{8}$ &$1.961\bar{1} $&$ 169\bar{6}$&$1.689\bar{9}$&$ 196\bar{8}$ \\ .2 &$1.774\bar{6} $&$ 299\bar{9}$&$1.479\bar{4}$&$ 359\bar{8}$ &$1.9316 $&$ 3374 $&$1.6645 $&$ 3916 $ \\ .3 &$1.729\bar{8} $&$ 446\bar{1}$&$1.4420 $&$ 535\bar{1}$ &$1.882\bar{9} $&$ 5019 $&$1.6225 $&$ 5824 $ \\ &&&&&&& \\ .4 &$1.6677 $&$ .5878 $&$1.3903 $&$0.7051 $ &$1.8153 $&$ .661\bar{4}$&$1.5643 $&$0.7675 $ \\ .5 &$1.5890 $&$ 723\bar{7}$&$1.324\bar{7}$&$0.868\bar{1}$ &$1.7296 $&$ 8142 $&$1.490\bar{5}$&$0.9449 $ \\ .6 &$1.4944 $&$ 8523 $&$1.2458 $&$1.022\bar{4}$ &$1.626\bar{7} $&$ 959\bar{0}$&$1.4017 $&$1.1131 $ \\ .7 &$1.384\bar{9} $&$ 9724 $&$1.154\bar{5}$&$1.166\bar{5}$ &$1.5074 $&$1.0941 $&$1.299\bar{0}$&$1.2697 $ \\ &&&&&&& \\ .8 &$1.261\bar{5}$&$1.0828 $&$1.051\bar{7}$&$1.298\bar{9}$ &$1.3731 $&$1.2183 $&$1.183\bar{3}$&$1.413\bar{9}$ \\ .9 &$1.1255 $&$1.182\bar{4} $&$0.938\bar{3}$&$1.4183 $ &$1.2251 $&$1.330\bar{4} $&$1.0557 $&$1.543\bar{9}$ \\ 1.0 &$0.9783 $&$1.270\bar{2} $&$0.815\bar{6}$&$1.5236 $ &$1.064\bar{9}$&$1.4291 $&$0.9176 $&$1.658\bar{5}$ \\ 1.1 &$0.8213 $&$1.3452 $&$0.684\bar{7}$&$1.613\bar{7}$ &$0.8940 $&$1.5136 $&$0.770\bar{4}$&$1.756\bar{5}$ \\ &&&&&&& \\ 1.2 &$ .6561 $&$1.406\bar{9} $&$0.547\bar{0}$&$1.6876 $ &$ .714\bar{2}$&$1.583\bar{0} $&$0.6154 $&$1.837\bar{0}$ \\ 1.3 &$ 484\bar{4}$&$1.4544 $&$0.403\bar{8}$&$1.744\bar{7}$ &$ 5272 $&$1.636\bar{5} $&$0.4543 $&$1.899\bar{1}$ \\ 1.4 &$ 307\bar{8}$&$1.487\bar{5} $&$0.256\bar{6}$&$1.7843 $ &$ 3350 $&$1.673\bar{7} $&$0.288\bar{7}$&$1.9422 $ \\ 1.5 &$ 128\bar{1}$&$1.505\bar{7} $&$0.106\bar{8}$&$1.8061 $ &$ 1394 $&$1.6941 $&$0.1201 $&$1.966\bar{0}$ \\ &&&&&&& \\ $\frac{1}{2}\pi$ &$ 0000 $&$1.509\bar{5} $&$ 0000 $&$1.810\bar{7}$ &$ 0000 $&$1.698\bar{4} $&$ 0000 $&$1.9709 $ \\ &&&&&&&& \\ \hline \end{tabular} \bigskip \begin{tabular}{r| rr| rr| rr| rr} \hline & \multicolumn{4}{|c|}{$ x = 1.4 $} & \multicolumn{4}{|c}{$ x = 1.5 $} \\ \cline{2-9} $y$ & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c|}{$d$} & \multicolumn{1}{c}{$a$}&\multicolumn{1}{c|}{$b$} & \multicolumn{1}{c}{$c$}&\multicolumn{1}{c}{$d$} \\ \hline &&&&&&& \\ 0 &$2.150\bar{9}$&$ .0000 $&$1.9043 $&$ .0000 $ &$2.3524$ &$ .0000 $&$2.129\bar{3}$&$ .0000 $ \\ .1 &$2.1401 $&$ 1901 $&$1.8948 $&$ 2147 $ &$2.3413 $&$ 2126 $&$2.118\bar{7}$&$ 2348 $ \\ .2 &$2.1080 $&$ 3783 $&$1.8663 $&$ 4273 $ &$2.3055 $&$ 4230 $&$2.0868 $&$ 4674 $ \\ .3 &$2.0548 $&$ 562\bar{8}$&$1.8192 $&$ 6356 $ &$2.2473 $&$ 6292 $&$2.034\bar{2}$&$ 6951 $ \\ &&&&&&& \\ .4 &$1.9811 $&$0.741\bar{6}$&$1.7540 $&$0.8376 $ &$2.1667 $&$0.829\bar{2}$&$1.961\bar{2}$&$0.916\bar{1}$ \\ .5 &$1.887\bar{6}$&$0.913\bar{0}$&$1.671\bar{2}$&$1.031\bar{2}$ &$2.0644 $&$1.0208 $&$1.8686 $&$1.1278 $ \\ .6 &$1.7752 $&$1.075\bar{3}$&$1.5713 $&$1.2145 $ &$1.9415 $&$1.2023 $&$1.757\bar{4}$&$1.328\bar{3}$ \\ .7 &$1.6451 $&$1.228\bar{8}$&$1.4565 $&$1.3856 $ &$1.7992 $&$1.3717 $&$1.628\bar{6}$&$1.515\bar{5}$ \\ &&&&&&& \\ .8 &$1.4985 $&$1.3661 $&$1.326\bar{8}$&$1.543\bar{0}$ &$1.6389 $&$1.527\bar{5}$&$1.483\bar{5}$&$1.6875 $ \\ .9 &$1.3370 $&$1.4917 $&$1.183\bar{8}$&$1.6849 $ &$1.462\bar{3}$&$1.6679 $&$1.323\bar{6}$&$1.842\bar{7}$ \\ 1.0 &$1.162\bar{2}$&$1.6024 $&$1.0289 $&$1.8099 $ &$1.2710 $&$1.7917 $&$1.150\bar{5}$&$1.979\bar{5}$ \\ 1.1 &$0.9756 $&$1.6971 $&$0.8638 $&$1.9168 $ &$1.067\bar{1}$&$1.8976 $&$0.965\bar{9}$&$2.096\bar{5}$ \\ &&&&&&& \\ 1.2 &$ .7794 $&$1.774\bar{9}$&$ .6900 $&$2.0047 $ &$ .8524 $&$1.984\bar{6}$&$ .771\bar{6}$&$2.1925 $ \\ 1.3 &$ 5754 $&$1.8349 $&$ 5094 $&$2.0725 $ &$ 629\bar{3}$&$2.051\bar{7}$&$ 569\bar{6}$&$2.266\bar{7}$ \\ 1.4 &$ 365\bar{6}$&$1.876\bar{6}$&$ 323\bar{7}$&$2.1196 $ &$ 3998 $&$2.0983 $&$ 3619 $&$2.318\bar{2}$ \\ 1.5 &$ 152\bar{2}$&$1.8996 $&$ 1347 $&$2.1455 $ &$ 1664 $&$2.1239 $&$ 1506 $&$2.3465 $ \\ &&&&&&& \\ $\tfrac{1}{2}\pi$ &$ .0000 $&$1.9043 $&$ 0000 $&$2.150\bar{9}$ &$ .0000 $&$2.129\bar{3}$&$ .0000 $&$2.3524 $ \\ &&&&&&&& \\ \hline \end{tabular} \normalsize \newpage \subsubsection*{} %% RWD Nickalls : empty subsubsection{} command as a hook for the addcontentsline... \textsc{Table III.} \\ \addcontentsline{lot}{table}{Table III.---Values of $\gd u$ and $\theta^\circ$} \scriptsize \medskip \begin{tabular}{r|rr||r|rr||r|rr} \hline \multicolumn{1}{c|}{\rule[-5pt]{0pt}{12pt}$u$} &\multicolumn{1}{c}{$\gd u$} &\multicolumn{1}{c||}{$\theta^\circ$} &\multicolumn{1}{c|}{$u$}&\multicolumn{1}{c}{$\gd u$} &\multicolumn{1}{c||}{$\theta^\circ$} &\multicolumn{1}{c|}{$u$}&\multicolumn{1}{c}{$\gd u$} &\multicolumn{1}{c}{$\theta^\circ$} \\ \hline & &\multicolumn{1}{c||}{$\circ$} & & &\multicolumn{1}{c||}{$\circ$} & & &\multicolumn{1}{c}{$\circ$} \\ 00 &$ .0000 $&$ 0.000 $ & .60 &$ .5669 $&$ 32.483 $ & 1.50 &$ 1.1317 $&$ 64.843 $ \\ .02 &$ 020\bar{0} $&$ 1.146 $ & .62 &$ 583\bar{7} $&$ 33.444 $ & 1.55 &$ 1.152\bar{5} $&$ 66.034 $ \\ .04 &$ 040\bar{0} $&$ 2.291 $ & .64 &$ 600\bar{3} $&$ 34.395 $ & 1.60 &$ 1.172\bar{4} $&$ 67.171 $ \\ .06 &$ 060\bar{0} $&$ 3.436 $ & .66 &$ 6167 $&$ 35.336 $ & 1.65 &$ 1.1913 $&$ 68.257 $ \\ .08 &$ 0799 $&$ 4.579 $ & .68 &$ 6329 $&$ 36.265 $ & 1.70 &$ 1.2094 $&$ 69.294 $ \\ &&&&&&&\\ .10 &$ .0998 $&$ 5.720 $ & .70 &$ .6489 $&$ 37.183 $ & 1.75 &$ 1.226\bar{7} $&$ 70.284 $ \\ .12 &$ 1197 $&$ 6.859 $ & .72 &$ 6648 $&$ 38.091 $ & 1.80 &$ 1.243\bar{2} $&$ 71.228 $ \\ .14 &$ 1395 $&$ 7.995 $ & .74 &$ 6804 $&$ 38.987 $ & 1.85 &$ 1.258\bar{9} $&$ 72.128 $ \\ .16 &$ 1593 $&$ 9.128 $ & .76 &$ 6958 $&$ 39.872 $ & 1.90 &$ 1.273\bar{9} $&$ 72.987 $ \\ .18 &$ 1790 $&$ 10.258 $ & .78 &$ 7111 $&$ 40.746 $ & 1.95 &$ 1.2881 $&$ 73.805 $ \\ & & & & & & \hrulefill & & \\ .20 &$ .198\bar{7} $&$ 11.384 $ & .80 &$ .7261 $&$ 41.608 $ & 2.00 &$ 1.3017 $&$ 74.584 $ \\ .22 &$ 218\bar{3} $&$ 12.505 $ & .82 &$ 7410 $&$ 42.460 $ & 2.10 &$ 1.3271 $&$ 76.037 $ \\ .24 &$ 2377 $&$ 13.621 $ & .84 &$ 755\bar{7} $&$ 43.299 $ & 2.20 &$ 1.350\bar{1} $&$ 77.354 $ \\ .26 &$ 2571 $&$ 14.732 $ & .86 &$ 770\bar{2} $&$ 44.128 $ & 2.30 &$ 1.371\bar{0} $&$ 78.549 $ \\ .28 &$ 2764 $&$ 15.837 $ & .88 &$ 7844 $&$ 44.944 $ & 2.40 &$ 1.389\bar{9} $&$ 79.633 $ \\ &&&&&&&\\ .30 &$ .2956 $&$ 16.937 $ & .90 &$ .798\bar{5} $&$ 45.750 $ & 2.50 &$ 1.407\bar{0} $&$ 80.615 $ \\ .32 &$ 314\bar{7} $&$ 18.030 $ & .92 &$ 8123 $&$ 46.544 $ & 2.60 &$ 1.422\bar{7} $&$ 81.513 $ \\ .34 &$ 3336 $&$ 19.116 $ & .94 &$ 826\bar{0} $&$ 47.326 $ & 2.70 &$ 1.436\bar{6} $&$ 82.310 $ \\ .36 &$ 352\bar{5} $&$ 20.195 $ & .96 &$ 8394 $&$ 48.097 $ & 2.80 &$ 1.4493 $&$ 83.040 $ \\ .38 &$ 371\bar{2} $&$ 21.267 $ & .98 &$ 8528 $&$ 48.857 $ & 2.90 &$ 1.460\bar{9} $&$ 83.707 $ \\ & & & \hrulefill & & & & \\ .40 &$ .3897 $&$ 22.331 $ & 1.00 &$ .865\bar{8} $&$ 49.605 $ & 3.00 &$ 1.4713 $&$ 84.301 $ \\ .42 &$ 408\bar{2} $&$ 23.386 $ & 1.05 &$ 897\bar{6} $&$ 51.428 $ & 3.10 &$ 1.4808 $&$ 84.841 $ \\ .44 &$ 4264 $&$ 24.434 $ & 1.10 &$ 9281 $&$ 53.178 $ & 3.20 &$ 1.4894 $&$ 85.336 $ \\ .46 &$ 444\bar{6} $&$ 25.473 $ & 1.15 &$ 957\bar{5} $&$ 54.860 $ & 3.30 &$ 1.497\bar{1} $&$ 80.715 $ \\ .48 &$ 462\bar{6} $&$ 26.503 $ & 1.20 &$ 985\bar{7} $&$ 56.476 $ & 3.40 &$ 1.504\bar{1} $&$ 86.177 $ \\ &&&&&&&\\ .50 &$ .4804 $&$ 27.524 $ & 1.25 &$ 1.0127 $&$ 58.026 $ & 3.50 &$ 1.5104 $&$ 86.541 $ \\ .52 &$ 4980 $&$ 28.535 $ & 1.30 &$ 1.038\bar{7} $&$ 59.511 $ & 3.60 &$ 1.516\bar{2} $&$ 86.870 $ \\ .54 &$ 5155 $&$ 29.537 $ & 1.35 &$ 1.063\bar{5} $&$ 60.933 $ & 3.70 &$ 1.5214 $&$ 87.168 $ \\ .56 &$ 5328 $&$ 30.529 $ & 1.40 &$ 1.087\bar{3} $&$ 62.295 $ & 3.80 &$ 1.526\bar{1} $&$ 87.437 $ \\ .58 &$ 550\bar{0} $&$ 31.511 $ & 1.45 &$ 1.110\bar{0} $&$ 63.598 $ & 3.90 &$ 1.5303 $&$ 87.681 $ \\ &&&&&&&& \\ \hline \end{tabular} \\ \normalsize \bigskip \textsc{Table IV.} \\ \addcontentsline{lot}{table}{Table IV.---Values of $\gd u, \log\sinh u, \log\cosh u$} \medskip \scriptsize \begin{tabular}{r|r|r|r||r|r|r|r} \hline \multicolumn{1}{c|}{\rule[-5pt]{0pt}{12pt}$u$} &\multicolumn{1}{c|}{$\gd u$} &\multicolumn{1}{c|}{$\log\sinh u$}&\multicolumn{1}{c||}{$\log\cosh u$} &\multicolumn{1}{c|}{$u$}&\multicolumn{1}{c|}{$\gd u$} &\multicolumn{1}{c|}{$\log\sinh u$}&\multicolumn{1}{c}{$\log\cosh u$} \\ \hline &&&&&&&\\ 4.0 &$ 1.534\bar{2} $&$ 1.4360 $&$ 1.4363 $ & 5.5 &$ 1.5626 $&$ 2.08758 $&$ 2.0876\bar{0} $ \\ 4.1 &$ 1.537\bar{7} $&$ 1.4795 $&$ 1.4797 $ & 5.6 &$ 1.5634 $&$ 2.13101 $&$ 2.1310\bar{3} $ \\ 4.2 &$ 1.5408 $&$ 1.5229 $&$ 1.5231 $ & 5.7 &$ 1.5641 $&$ 2.17444 $&$ 2.17445 $ \\ 4.3 &$ 1.543\bar{7} $&$ 1.5664 $&$ 1.5665 $ & 5.8 &$ 1.5648 $&$ 2.21787 $&$ 2.21788 $ \\ 4.4 &$ 1.5462 $&$ 1.6098 $&$ 1.6099 $ & 5.9 &$ 1.5653 $&$ 2.36130 $&$ 2.26131 $ \\ & & & & \hrulefill & & & \\ 4.5 &$ 1.548\bar{6} $&$ 1.6532 $&$ 1.6533 $ & 6.0 &$ 1.5658 $&$ 2.30473 $&$ 2.3047\bar{4} $ \\ 4.6 &$ 1.550\bar{7} $&$ 1.6967 $&$ 1.6968 $ & 6.2 &$ 1.5667 $&$ 2.39159 $&$ 2.3916\bar{0} $ \\ 4.7 &$ 1.5526 $&$ 1.7401 $&$ 1.7402 $ & 6.4 &$ 1.567\bar{5} $&$ 2.47845 $&$ 2.47846 $ \\ 4.8 &$ 1.5543 $&$ 1.7836 $&$ 1.7836 $ & 6.6 &$ 1.568\bar{1} $&$ 2.56531 $&$ 2.56531 $ \\ 4.9 &$ 1.5559 $&$ 1.8270 $&$ 1.8270 $ & 6.8 &$ 1.568\bar{6} $&$ 2.65217 $&$ 2.65217 $ \\ & & & & \hrulefill & & & \\ 5.0 &$ 1.5573 $&$ 1.8704 $&$ 1.870\bar{5} $ & 7.0 &$ 1.569\bar{0} $&$ 2.73903 $&$ 2.73903 $ \\ 5.1 &$ 1.5586 $&$ 1.913\bar{9} $&$ 1.913\bar{9} $ & 7.5 &$ 1.569\bar{7} $&$ 2.9561\bar{8} $&$ 3.9561\bar{8} $ \\ 5.2 &$ 1.559\bar{8} $&$ 1.957\bar{3} $&$ 1.9573 $ & 8.0 &$ 1.570\bar{1} $&$ 3.1733\bar{3} $&$ 3.1733\bar{3} $ \\ 5.3 &$ 1.5608 $&$ 2.0007 $&$ 2.0007 $ & 8.5 &$ 1.570\bar{4} $&$ 3.39047 $&$ 3.39047 $ \\ 5.4 &$ 1.561\bar{8} $&$ 2.044\bar{2} $&$ 2.044\bar{2} $ & 9.0 &$ 1.5705 $&$ 3.60762 $&$ 3.60762 $ \\ & & & & \multicolumn{1}{c|}{$\infty $} &$ 1.570\bar{8} $&\multicolumn{1}{c|}{$\infty $} &\multicolumn{1}{c}{$\infty $} \\ &&&&&&& \\ \hline \end{tabular} \index{Hyperbolic functions!tables of|)} \normalsize \end{center} \chapter{Appendix.} \section{Historical and Bibliographical.} What is probably the earliest suggestion of the analogy between the sector of the circle and that of the hyperbola is found in Newton's Principia (Bk.~2, prop.~8 et seq.) in connection with the solution of a dynamical problem.\index{Newton, reference to} On the analytical side, the first hint of the modified sine and cosine is seen in Roger Cotes' Harmonica Mensurarum (1722), where he suggests the possibility of modifying the expression for the area of the prolate spheroid so as to give that of the oblate one, by a certain use of the operator $\sqrt{-1}$.\index{Cotes, reference to} The actual inventor of the hyperbolic trigonometry was Vincenzo Riccati, S.J.\ (Opuscula ad res Phys.\ et Math.\ pertinens, Bononi\ae{}, 1757).\index{Riccati's place in the history} He adopted the notation $\mathrm{Sh.}\phi$, $\mathrm{Ch.}\phi$ for the hyperbolic functions, and $\mathrm{Sc.}\phi$, $\mathrm{Cc.}\phi$ for the circular ones. He proved the addition theorem geometrically and derived a construction for the solution of a cubic equation. Soon after, Daviet de Foncenex showed how to interchange circular and hyperbolic functions by the use of $\sqrt{-1}$, and gave the analogue of De Moivre's theorem, the work resting more on analogy, however, than on clear definition (Reflex.\ sur les quant.\ imag., Miscel.\ Turin Soc., Tom.~1).\index{Foncenex, reference to} Johann Heinrich Lambert systematized the subject, and gave the serial developments and the exponential expressions. He adopted the notation $\sinh u$, etc., and introduced the transcendent angle, now called the gudermanian, using it in computation and in the construction of tables (l.~c.\ page 30).\index{Lambert's!place in the history} The important place occupied by Gudermann in the history of the subject is indicated on page~\pageref{gudermanian}.\index{Gudermanian!function} The analogy of the circular and hyperbolic trigonometry naturally played a considerable part in the controversy regarding the doctrine of imaginaries, which occupied so much attention in the eighteenth century, and which gave birth to the modern theory of functions of the complex variable. In the growth of the general complex theory, the importance of the ``singly periodic functions'' became still clearer, and was gradually developed by such writers as Ferroni (Magnit. expon.\ log.\ et trig., Florence, 1782)% \index{Ferroni, reference to}; Dirksen (Organon der tran.\ Anal., Berlin, 1845)\index{Dirksen's Organon}; Schellbach (Die einfach.\ period.\ funkt., Crelle, 1854)\index{Schellback, reference to}; Ohm (Versuch eines volk.\ conseq.\ Syst.\ der Math., Nürnberg, 1855)\index{Ohm, reference to}; Hoüel (Theor.\ des quant.\ complex, Paris, 1870).\index{Hoüel's notation, etc.} Many other writers have helped in systematizing and tabulating these functions, and in adapting them to a variety of applications. The following works may be especially mentioned: Gronau (Tafeln, 1862, Theor.\ und Anwend., 1865)\index{Gronau's!Tafeln}\index{Gronau's!Theor.\ und Anwend.}; Forti (Tavoli e teoria, 1870)\index{Forti's Tavoli e teoria}; Laisant (Essai, 1874)\index{Laisant's Essai, etc.}; Gunther (Die Lehre ..., 1881)\index{Gunther's Die Lehre, etc.}. The last-named work contains a very full history and bibliography with numerous applications. Professor A.~G.\ Greenhill, in various places in his writings, has shown the importance of both the direct and inverse hyperbolic functions, and has done much to popularize their use (see Diff.\ and Int.\ Calc., 1891).\index{Greenhill's!Calculus} The following articles on fundamental conceptions should be noticed: Macfarlane, On the definitions of the trigonometric functions (Papers on Space Analysis, N.~Y., 1894)\index{Macfarlane on definitions}; Haskell, On the introduction of the notion of hyperbolic functions (Bull.\ N.~Y.\ M.\ Soc., 1895).\index{Haskell on fundamental notions} Attention has been called in Arts.\ 30 and 37 to the work of Arthur E.\ Kennelly in applying the hyperbolic complex theory to the plane vectors which present themselves in the theory of alternating currents; and his chart has been described on page~\pageref{period-hyp-funct} as a useful substitute for a numerical complex table (Proc. A.~I.~E.~E., 1895). It may be worth mentioning in this connection that the present writer's complex table in Art.\ 39 is believed to be the only one of its kind for any function of the general argument $x+iy$. \medskip \section{Exponential Expressions as Definitions.}% \index{Exponential expressions} For those who wish to start with the exponential expressions as the definitions of $\sinh u$ and $\cosh u$, as indicated on page~\pageref{def hyper as exp}, it is here proposed to show how these definitions can be easily brought into direct geometrical relation with the hyperbolic sector in the form $\frac{x}{a}=\cosh \frac{S}{K}$, $\frac{y}{b} = \sinh \frac{S}{K}$, by making use of the identity $\cosh^2 u - \sinh^2 u = 1$, and the differential relations $d \cosh u = \sinh u\, du$, $d \sinh u = \cosh u\, du$, which are themselves immediate consequences of those exponential definitions. Let $OA$, the initial radius of the hyperbolic sector, be taken as axis of $x$, and its conjugate radius $OB$ as axis of $y$; let $OA = a$, $OB = b$, angle $AOB = \omega$, and area of triangle $AOB = K$, then $K = \frac{1}{2}ab \sin \omega$. Let the coordinates of a point $P$ on the hyperbola be $x$ and $y$, then $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Comparison of this equation with the identity $\cosh^2 u - \sinh^2 u = 1$ permits the two assumptions $\frac{x}{a} = \cosh u$ and $\frac{y}{b} = \sinh u$, wherein $u$ is a single auxiliary variable; and it now remains to give a geometrical interpretation to $u$, and to prove that $u = \frac{S}{K}$, wherein $S$ is the area of the sector $OAP$. Let the coordinates of a second point $Q$ be $x + \Delta x$ and $y + \Delta y$, then the area of the triangle $POQ$ is, by analytic geometry, $\frac{1}{2}(x \Delta y - y \Delta x) \sin \omega$. Now the sector $POQ$ bears to the triangle $POQ$ a ratio whose limit is unity, hence the differential of the sector $S$ may be written $dS = \frac{1}{2}(x dy - y dx) \sin \omega = \frac{1}{2} ab \sin \omega (\cosh^2 u-\sinh^2 u) du = K du$. By integration $S = Ku$, hence $u= \frac{S}{K}$, the sectorial measure (p.~\pageref{sectoral-measures}); this establishes the fundamental geometrical relations $\frac{x}{a}=\cosh \frac{S}{K}, \frac{y}{b} = \sinh \frac{S}{K}$. %%=================================================================== %% RWD Nickalls(dick@nickalls.org)(June2018) %% use \backmatter command to disable chapter numbering \backmatter \printindex %% just inputs the refashioned .ind file %%================================================================== \newpage \chapter{PROJECT GUTENBERG "SMALL PRINT"} \small \pagenumbering{gobble} \begin{verbatim} End of the Project Gutenberg EBook Hyperbolic Functions, by James McMahon *** END OF THIS PROJECT GUTENBERG EBOOK HYPERBOLIC FUNCTIONS *** ***** This file should be named 13692-t.tex or 13692-t.zip ***** This and all associated files of various formats will be found in: https://www.gutenberg.org/1/3/6/9/13692/ Produced by David Starner, Joshua Hutchinson, John Hagerson, and the Project Gutenberg On-line Distributed Proofreading Team. Updated editions will replace the previous one--the old editions will be renamed. Creating the works from public domain print editions means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for the eBooks, unless you receive specific permission. If you do not charge anything for copies of this eBook, complying with the rules is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. They may be modified and printed and given away--you may do practically ANYTHING with public domain eBooks. Redistribution is subject to the trademark license, especially commercial redistribution. *** START: FULL LICENSE *** THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the terms of the Full Project Gutenberg-tm License (available with this file or online at https://gutenberg.org/license). Section 1. General Terms of Use and Redistributing Project Gutenberg-tm electronic works 1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8. 1.B. "Project Gutenberg" is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below. 1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is in the public domain in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the terms of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others. 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country outside the United States. 1.E. Unless you have removed all references to Project Gutenberg: 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed: This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org 1.E.2. If an individual Project Gutenberg-tm electronic work is derived from the public domain (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9. 1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work. 1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm. 1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg-tm License. 1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg-tm web site (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1. 1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9. 1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that - You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation." - You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg-tm License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works. - You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work. - You comply with all other terms of this agreement for free distribution of Project Gutenberg-tm works. 1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from both the Project Gutenberg Literary Archive Foundation and Michael Hart, the owner of the Project Gutenberg-tm trademark. Contact the Foundation as set forth in Section 3 below. 1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread public domain works in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment. 1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE. 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem. 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions. 1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause. Section 2. Information about the Mission of Project Gutenberg-tm Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life. Volunteers and financial support to provide volunteers with the assistance they need, is critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation web page at https://www.pglaf.org. Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Its 501(c)(3) letter is posted at https://pglaf.org/fundraising. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws. The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email business@pglaf.org. Email contact links and up to date contact information can be found at the Foundation's web site and official page at https://pglaf.org For additional contact information: Dr. Gregory B. Newby Chief Executive and Director gbnewby@pglaf.org Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg-tm depends upon and cannot survive without wide spread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS. The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit https://pglaf.org While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate. International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff. Please check the Project Gutenberg Web pages for current donation methods and addresses. Donations are accepted in a number of other ways including including checks, online payments and credit card donations. To donate, please visit: https://pglaf.org/donate Section 5. General Information About Project Gutenberg-tm electronic works. Professor Michael S. Hart was the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For thirty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer support. Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as Public Domain in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition. Most people start at our Web site which has the main PG search facility: https://www.gutenberg.org This Web site includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks. *** END: FULL LICENSE *** \end{verbatim} \normalsize \end{document}