
Developer’s Guide
1.2

Mobius Forensic Toolkit

c©2008-2018 Eduardo Aguiar

2 Mobius Forensic Toolkit — Developer’s Guide

Contents

1 Introduction 1

2 Mobius’ Software Architecture 3
2.1 Extensions’ communication . 4

2.1.1 advertise/call . 4
2.1.2 connect/emit . 4

3 Developing extensions 7
3.1 Opening an extension . 7
3.2 Creating a new extension . 7

4 Datasources 11
4.1 services available . 12

5 Widgets 13
5.1 container . 13

Mobius Forensic Toolkit — Developer’s Guide 3

4 CONTENTS

Mobius Forensic Toolkit — Developer’s Guide

1
Introduction

Every available open source forensic tools tries to solve a very specific problem under the investigation

scope, and some of them are very successful in doing that. Unfortunately, most of them lacks integration

and their development are made harder because of the absence of common code, and therefore of code

reuse. Their outputs are not standardized, and most of them presents command line interface.

The Mobius Forensic Toolkit is a framework to develop forensic tools. It is written in C++ and Python,

using PyGTK and PyCairo. It is very extensible through specialized programs called extensions, and

these programs share services, program environment and have access to a unified case model.

This guide is focused on using the Mobius Forensic Toolkit API and on developing extensions for

the Mobius Forensic Toolkit framework. Sample source code is presented when suitable. It is a work in

progress and it is not intended to be a complete reference guide.

Mobius Forensic Toolkit — Developer’s Guide 1

2 Introduction

Mobius Forensic Toolkit — Developer’s Guide

2
Mobius’ Software Architecture

The Mobius Forensic Toolkit architecture is divided in two main parts:

1. The Mobius Forensic Toolkit API, which comprises the Python API, the C++ API and the

Python wrapper to the C++ API. This API can be used both by stand-alone programs and by the

Mobius Forensic Toolkit extensions;

2. The Mobius Forensic Toolkit extensions, independent programs written in Python that run

on their own code sandbox, and interact only through the global mediator object gdata.mediator.

The Mobius Forensic Toolkit application is a collection of both forensic and auxiliary extensions.

Figure 2.1: Extensions are written in Python, using both the Python API and the C++
API through the Python wrapper layer.

Mobius Forensic Toolkit — Developer’s Guide 3

4 Mobius’ Software Architecture

2.1 Extensions’ communication

Any extension written to the Mobius Forensic Toolkit has a gdata.mediator object. This object is an

instance of the global mediator and is used in two different ways:

1. Into the bulletin board pattern, where one extension advertises a service that might be called by

any extension, including the advertiser extension itself;

2. As a event broadcaster, where one extension emits an event and the extensions that are connected

to this event receive a signal. The following sections show both kind of communication among

extensions.

2.1.1 advertise/call

Figure 2.2: advertise/call: a) extension A advertises service “myservice”; b) extension B
calls service “myservice’; c) gdata.mediator calls service callback function, passing back
the function return value to extension B.

def ca l lback_funct ion (s) :
return " h e l l o ␣" + s

gdata . mediator . adv e r t i s e ("myservice " , ca l lback_funct ion)

Figure 2.3: advertise/call extension A code

value = gdata . mediator . c a l l ("myservice " , " user ")
print value # shows " h e l l o user "

Figure 2.4: advertise/call extension B code

2.1.2 connect/emit

The code shown in figure 2.9 is the generated code of extension date-code. It connects to the event

object.attribute-modified which is triggered every time an object’s attribute is modified.

Mobius Forensic Toolkit — Developer’s Guide

2.1 Extensions’ communication 5

Figure 2.5: connect/emit: a) extensions B and C connect to event “event-1”, passing
callback functions to be called; b) extension A emits an event “event-1” along with args; c)
extensions B and C callbacks are called by the gdata.mediator object.

def ca l l ba ck (case) :
print " extens i on ␣B−>event−1␣on␣ case ␣’%s ’ " % case . name

gdata . mediator . connect (" event−1" , c a l l b a ck)

Figure 2.6: connect/emit: extension B code

def ca l l ba ck (case) :
print " extens i on ␣C−>event−1␣on␣ case ␣’%s ’ " % case . name

gdata . mediator . connect (" event−1" , c a l l b a ck)

Figure 2.7: connect/emit: extension C code

. . .
i f some_condition :

gdata . mediator . emit (’ event−1 ’ , case)

Figure 2.8: connect/emit: extension A code

Mobius Forensic Toolkit — Developer’s Guide

6 Mobius’ Software Architecture

def ca l l ba ck (obj , attr_id , old_value , va lue) :
i f attr_id == ’ manufacturing_date ’ and 4 <= len (va lue) <= 5 :
Y = int (va lue [0 : 2])
W = int (va lue [2 : −1])
D = int (va lue [−1 :])

f i s c a l year beg in s at f i r s t sa turday o f Ju ly

d = datet ime . date (Y + 1999 , 7 , 1)
i f d . weekday () < 6 :

days_to_saturday = 5 − d . weekday ()
else :

days_to_saturday = 6
d += datet ime . t imede l ta (days=days_to_saturday)

Add date code ’ s weeks and days

d += datet ime . t imede l ta (weeks=W − 1 , days=D − 1)

obj . manufacturing_date = d . i s o f o rmat ()

gdata . mediator . connect (’ ob j e c t . a t t r i bu t e−modi f i ed ’ , c a l l b a ck)

Figure 2.9: connect/emit: date-code extension code

Mobius Forensic Toolkit — Developer’s Guide

3
Developing extensions

The Mobius Forensic Toolkit is implemented using extensions. Each extension is a separated program that

runs on its own independent namespace. The Extension Builder is an extension that was specifically made

to edit extensions. It is a complete IDE that handles the underlying extensions and services structure,

with code editing capabilities.

To start Extension Builder, click on tools→Extension Builder menu option. A window like the

one shown in figure 3.1 will be opened.

3.1 Opening an extension

After you have started Extension Builder, click on Open menu option or on the corresponding icon in the

toolbar, to open an extension.

Mobius Forensic Toolkit distribution files (.tar.gz, .tar.bz2, or .zip) have a directory named

extensions where you can find all extensions that are distributed inside those packages. Feel free to

open those extensions, and even to create new ones based upon their source codes. In this example, we

have selected all extensions from extensions directory (figure 3.2).

To use an extension you have modified, you must install it using Mobius main window tools option.

3.2 Creating a new extension

As told before, you can open an existing extension, modify its source codes and save it as a new extension.

But you can also start with a fresh new one. Click on New menu option or on the corresponding icon at

toolbar, to create an extension.

Change your extension properties using properties option, and it will open up a dialog (figure 3.3).

Mobius Forensic Toolkit — Developer’s Guide 7

8 Developing extensions

Figure 3.1: Extension Builder running

Mobius Forensic Toolkit — Developer’s Guide

3.2 Creating a new extension 9

Figure 3.2: Extension Builder showing extensions

Mobius Forensic Toolkit — Developer’s Guide

10 Developing extensions

Figure 3.3: Extension Builder properties dialog

Mobius Forensic Toolkit — Developer’s Guide

4
Datasources

Datasources are objects that handle access to data. Each case item has an attribute datasource that can

be assigned by the user and contains information on how to retrieve the data. The figure 4.1 illustrates

an example on how to use the datasources:

datasource = item . datasource

check i f da tasource i s a v a i l a b l e

i s_ava i l ab l e = gdata . mediator . c a l l (’ datasource . i s−av a i l a b l e ’ , datasource)
print ’ datasource ␣ i s ␣ a v a i l a b l e : ’ , i s_ava i l ab l e

r e t r i e v e metadata

metadata = gdata . mediator . c a l l (’ datasource . r e t r i e v e−metadata ’ , datasource)

for attr_id , attr_name , attr_value in metadata :
print attr_id , attr_name , attr_value

read some by t e s . . .

reader = gdata . mediator . c a l l (’ datasource . get−reader ’ , datasource)
i f reader :

r eader .open ()
data = reader . read (512)
reader . c l o s e ()

ge t datasource path , when a v a i l a b l e

path = gdata . mediator . c a l l (’ datasource . get−path ’ , datasource)

Figure 4.1: using datasources services

Mobius Forensic Toolkit — Developer’s Guide 11

12 Datasources

4.1 services available

• datasource.get-metadata returns a list of tuples containing the attribute ID, attribute name and

attribute value of metadata.

metadata = gdata . mediator . c a l l (’ datasource . r e t r i e v e−metadata ’ , datasource)

for attr_id , attr_name , attr_value in metadata :

print attr_id , attr_name , attr_value

• datasource.get-path returns the datasource’s path, when available. The idea behind this service

is to allow third party tools to have access to the datasources. Note that extensions should not use

this feature, because not every type of datasource has a local path (e.g. remote datasources).

path = gdata . mediator . c a l l (’ datasource . get−path ’ , datasource)

print ’ l o c a l ␣path : ’ , path

• datasource.get-reader returns a reader object, when available, to read data from datasource.

reader = gdata . mediator . c a l l (’ datasource . get−reader ’ , datasource)

i f reader :

r eader .open ()

data = reader . read (512)

reader . c l o s e ()

• datasource.is-available returns True/False whether the datasource is available for reading,

e.g. whether the physical device is attached and ready.

i s_ava i l ab l e = gdata . mediator . c a l l (’ datasource . i s−a v a i l a b l e ’ , datasource)

print ’ datasource ␣ i s ␣ a v a i l a b l e : ’ , i s_ava i l ab l e

Mobius Forensic Toolkit — Developer’s Guide

5
Widgets

Widgets are visual components that can be used in extensions. They are encoded to be independent of

specific UI libraries. To construct a widget, call the ui.new-widget service, passing a widget class name,

as follow:

widget = gdata . mediator . c a l l (’ u i . new−widget ’ , ’ tab l ev i ew ’)

5.1 container

The container is a widget that contains another widget. It also has a warning label that can be used to

show warning messages, calling the set_warning_label method (figure 5.1).

Figure 5.1: the same container showing its content (left) and showing a warning label (right).

Mobius Forensic Toolkit — Developer’s Guide 13

14 Widgets

Figure 5.2: the container widget’s interface

The methods of the container widget are:

• show () — show widget

• hide () — hide widget

• set_sensitive (flag) — set whether widget is sensitive to user actions.

• set_warning_label (text) — set warning label

• set_content (widget) — set widget’s content

• get_content () — get widget’s content

• remove_content () — remove widget’s content

• show_content () — show widget’s content instead of the warning label

Mobius Forensic Toolkit — Developer’s Guide

