A Truly Implementation Independent GUI Development Tool

Martin C. Carlisle
Department of Computer Science
2354 Fairchild Dr., Suite 6K41
US Air Force Academy, CO 80840-6234
(719) 333-3590

carlislem@acm.org

1. ABSTRACT

Over thelast few years, graphical user
interface programming has bemme
increasingly prevalent. Many librariesand
languages have been developed to simplify
thistask. Additionally, design tods have
been created that allow the programmer to
“draw” their desired interfaceand then
have amde automatically generated.
Unfortunately, use of these todlslocksthe
programmer into aparticular
implementation. Even if thetood targetsa
multi-platform library (e.g. Tcl/Tk or JVM),
the flexibility of theresult is constrained.
We present a truly implementation and
platform independent solution. RAPID
generates Ada code targeted to an objed-
oriented set of graphical user interface
spedfications with absolutely no
implementation dependent information.
The pattern used to derivethese
spedficationsisan improvement over the
“Abstract Factory” Pattern, asit allows
both the spedfication and implementation
to take advantage of inheritance The user
can then seled an implementation (for
example, Tcl/Tk or JVM) at compiletime.
RAPID itself isalso written using the same
spedfications; thereforeit requiresno
modification to target a new implementation

or to use a new implementation itself.
RAPID iscurr ently being used to design the
user interfacefor a satellite ground station.

1.1 Keywords
Graphical user interfaces, automatic code generation,
Td/Tk, Java, Ada

2. INTRODUCTION

The combination of cheaper computing power and the
introduction of the @mputer into the household has
brought about a change in the nature of the user
interface of most programs. The use of graphical user
interfaces (GUIs) rather than text-based user interfaces
has bewmme increasingly widespread. Although
graphical user interface programming was originally
bath highly complicated and system dependent, a large
colledion of widget libraries and GUI design tods have
been created to simplify this task.

GUI design tods allow the user to visually create the
graphical user interface for their programs, usualy by
clicking and dragging out the outline of a widget and
then filling in the properties via adialog. Once the
design is complete, code is automatically generated
which creates the user interface This code usualy
targets a particular widget library, which also provides
operations which allow the user to query the status of
the widgets (to read the text in a text entry widget, e.g.)
Unfortunately, many of these tods restrict the user to a
particular platform (e.g. Windows) [1,3].

Some GUI design tods target libraries that have been
implemented across sveral platforms. While these
tods alow a programmer to use the same generated
source @de on many different machines, they still
constrain the user to a particular implementation.
Ideally, we would like to be able to separate the design
of the user interface from the sdedion of an
implementation. RAPID all ows the programmer to do
predsdy that.

RAPID generates code for an objed-oriented set of
graphical user interface spedfications that contains no
implementation dependent information. A particular
implementation may be seleded at compil e time of the
generated source @de. Currently, Tc/Tk and VM

implementations are provided. RAPID is aso
implemented using the same libraries. This means that
not only can the programmer pick an implementation
for the output of the GUI design tod, but also the tod
itself can be @esly targeted to different
implementations.

A new design pattern, the Pea Pattern, allows us to
smplify the @nfiguration management of multiple
implementations of the same spedfication. We describe
the Pea Pattern, a novel solution to the same probem
solved by the Abstract Factory Pattern, in Sedion 3. In
Sedion 4, we describe the arrrent functionality of
RAPID. We mntrast RAPID with prior work in this
area in Sedion 5. Finally, we @nclude and dve
diredionsfor future work.

3. MODERNIZING THE ABSTRACT
FACTORY

AbstractFactory Clignt
Create (Product)
? Zﬁ Products
Factony Factony2 |
AbstractProduct AbstractProduct? |
1 P o, oy
il Product!t | | Product12 Product21 Product2?2

Figure 1: Abstract Factory Pattern classhierarchy

Gamma et al describe the Abstract Factory Pattern,
which is useful for “a user interfacetodkit that supports
multiple look-and-fed standards, such as Motif and
Presentation Manager” [6]. ET++ [17] used the same
pattern to achieve portability across different window
systems. In the Abstract Factory Pattern, each user
interface item is defined as an abstract class and the
various implementations (in this example, Motif and
Presentation Manager) are defined as children of the
abstract class Then, a factory is defined. The factory
merely calls the appropriate aeation methods
depending on which implementation is currently
seleded. Matthew Heaney [9] has implemented the
Abstract Factory Pattern in Ada in two ways. The first
is exactly as described by Gamma et a; he also notes
that you can acoomplish the Abstract Factory simply by
doing static package renaming. Figure 1 shows the
classhierarchy of the Abstract Factory Pattern obtained
from the SIGAda Patterns web site [9]. The triangular
arrows point from a child classto its parent class The

dashed lines point from a client to the package whose
objeds it instantiated. The solid arrows point from a
client to the packages it utilizes. Although it is not
shown in the diagram, the dient would also neal to
access AbstractProductl and AbstractProduct2 to use
the associated methods.

The problem with the Abstract Factory Pattern becomes
evident when we attempt to extend an abstract product.
For example, suppose we wish to create
AbstractProduct3, which extends the functionality of
AbstractProduct2. It is a smple matter to create the
abstract class by simply extending AbstractProduct2.
When we implement Product31, it islikely the ase that
we would like to extend the dass Product2l.
Unfortunately, Product31 is dready a child of
AbstractProduct3. Many important oljed-oriented
languages (such as Ada and Java) do not all ow multiple
inheritance therefore, we are required to reimplement
the functionality of Product21 in Product31.

One solution is to simply dispose of the Abstract
Factory altogether, and implement two separate
hierarchies, making sure that each has the same
methods and class names. The user then sdeds an
implementation by including the appropriate set of files
in the projed (via a makefile, compiler flags, or
similar). This has the disadvantage that multi ple wpies
of the spedfications are aeated, each differing only in
the representation of the data.

We ingstead solve the problem by creating the Pee
Pattern. In the Pea Pattern, one hierarchy gives the
spedfication of the dasses. The dient sees only this
hierarchy. A seand hierarchy actually implements the
spedfication. Thisisillustrated in Figure 2. In Figure
2, the dashed lines leading from the products to the
pees are labded “depending on compil ation seledion.”
The reason for thisisthat whil e the spedfications of the
products ae eactly the same across al
implementations, the bodies of these packages are
different. To accomplish this, the roat level objed of
Product has the foll owing dedaration:

type Object is tagged record
My_Peer Peer . Peer;
end record;

The peg type @n then be defined on an
implementation-spedfic basis. For the Td/Tk
implementation, the Pea contains a string pointer
giving the name of the Tk widget. For the JVvM
implementation, it is a classwvide pointer to a Java
obed. To simplify the seledion of an implementation

depending on compilation selection

..

deper‘ui:ling on compilation selection

——

depending on campiiatian selectia;"l

I e mmmmmmm e ———— Fommmm==
'

___________________ Products Client
S
. Producti Product2
Products |

Peerl?

Figure 2: The Peer Pattern classhierarchy

at compil ation time for RAPID, we organize the files
into the following dredories:

 Mcc Gui: contains the package
spedfications of the “products’, i.e. the
widgets, windows, etc. These are named:
Mcc.Gui, Mcc.Gui.Container, Mcc.Gui.Wi
doet, Mcc.Gui.Widget.Radio Button, etc.

* Lib: contains package spedfications and
bodies that are wuseful across all
implementations of Mcc_Gui.

e Tc_Pea: contains bath the spedfication
and body of the package Peea for the
Tcl/Tk implementation. It aso contains a
set of package baodies, based on this Pee
package, for the spedfications in the
Mcc_Gui diredory.

e JWM_Pea: dgmilar to Tcl_Pea, but
instead uses Jva components to
implement the Mcc_Gui spedfications.

This mechanism totally separates the spedfication from
the implementation (since the Mcc_Gui files contain
only a reference to the implementation’s
representation). Additionally, each implementation is
freeto create a separate dasshierarchy.

The Ada Language Reference Manual [11] spedfies
that “each compilation submitted to the cmpiler is
compiled in the mntext of an environment.” This
environment contains compilation units. The process

for adding and replacing compilation units is not
spedfied. In practice sdeding an implementation is
acoomplished wsing either a command line argument
spedfying which diredories to include, or by diredly
adding a list of the included files to a projea file
(perhaps using a file seledion dialog). Including the
files from a single Pea diredory in the environment
alows the mmpiler to complete the definition of the
My Peg fidd of the Objea type.

This slution solves configuration management isaues
pertaining to having multiple cpies of spedfications
that differ only in the private sedion (where the
representation is gated).

4. RAPID FEATURES

RAPID provides an intuitive interface for designing a
graphical user interface Figure 3 shows the Tcl/Tk
implementation of RAPID window while editing a file.
The first row of buttons is a todbar. These buttons
alow the user to create a new window, open a previous
window, save the arrent window, delete or dudicate
the sdleded widget, start the menu editor, or compile
the GUI to Ada code. The second row of buttons is
used to sded what type of widget will be added
(currently text labels, text buttons, picture buttons, and
text entry widgets, ched buttons, radio buttons, static
pictures, diders, progress bars and listboxes are
supported, and more are being added.) After sdleding a
widget type, the designer uses the left mouse button to
click and drag out anew widget. As sownin Figure 3,

aredangle with an arrow appears as the user clicks and
drags out the new widget.

Labe| Properties
Label Options Test Options
Widet name |— Test l—
% |2U— Justiication ||eft—
i |19— Foregraund Color |—
Width IES— Backgound Calor l—
Het [B3
fipply | K | Eancell

Figure 3: The RAPID window after opening aGUI file.

Once the user releases the left mouse button, a dialog
box appears that asks the user to fill in the rest of the
properties of the widget. The location and size of the
widget are automatically filled in. Figure 4 shows the
dialog for a label widget. The user is asked to give a
name to the widget. This name is used as a variable
name. For alabel, the user sdeds the text that will be
displayed, its justification, and also the foreground and
background colors. Some widgets, such as buttons, also
have actions associated with them. These actions
indicate what should happen when the button is pushed,
the user presses a key in a text entry widget, etc. The
user spedfies an action by giving a fully qualified Ada
procedure name (with package name, eg.
Actions. Ck_Button).

Additionally, RAPID has a menu-editing tod, whose
visual interface is modded after a Windows-based file
browser. Arbitrarily nested menus can be aeated using
this tod. The menu is then displayed in the window
when the menu editor is closed (as sown in Figure 3).
Menu items can also be associated with accderator keys
by typing the shortcut that will appear in the menu (e.g.
“Ctrl+X"). RAPID then also generates code for the
window that will i nvoke the action associated with the
menu choicewhen the key sequenceis pressd.

The RAPID GUI designer all ows the user to generate a
simple graphical user interface without any knowledge
of GUI programming. Oncethey are pleased with their
design, pushing the awmpil e button will generate all of
the necessary Ada code to display the interface and
handle all of the events. The designer can then focus
on the functionality of the program.

c:ikeepmehrapid-1.1\demo\zort\main. gui _ (O] x|

File Edit Tools Help

D]|d| 2 &= &

8 ol e
Bob

Program Bubble Shel Guick Inzertion

Sart Timing Program

Tupe of Sort
" Bubble Sart
" Shell Sort
™ Guick Sart

" Inzertion Sart

[T Sort Descending

ao

Gol | ou |

Figure 4: Dialog for entering the properties of a label
widget

5. PREVIOUSWORK

There are several efforts in progress to provide GUI
libraries and design tods for Ada. Both the Aonix GUI
Builder [1] and the CLAW Application Builder [3]
generate Ada code that uses the Win 32 libraries to
implement the user interface widgets. (Note CLAW
claims to ke “portable,” but this portability refers to its
ability to ke used with several compilers, not on several
platforms). This has advantages if you are only
interested in that particular platform (as you can take
advantage of the unique features of the Wn 32
libraries), but requires you to entirely redesign your
application’ s user interfaceto port it to a new platform.

Additionally, several projeds provide bindings for Ada
to libraries that run on many different machines. First,
TASH [16] provides a thin binding to Tcl/Tk [13].
Tc/Tk implementations are available on Windows,
Macintosh, Linux and UNIX. Westley is also creating
an ohjed-oriented thick binding to the widgets in the
Tk todkit. Ada compilers are also beginning to target
the Java Virtual Machine [1, 5]. Using Tcl/Tk to
provide the user interface has a speal advantage for the
code outside the user interface (sinceit will be compiled
to native machine mde) and also makes it easier to
interface with native ade, as the Java Native Interface
[15] is quite complex compared to Ada's interfacing
pragmas. Java [8], however, has a far richer set of
graphics primitives avail able.

GtkAda [2] provides an objed-oriented binding to the
Gtk+ todkit [12]. Additionaly, a graphical user

interface designer, GLADE [7], is available for Gtk+.
Gtk+ currently runs on many flavors of UNIX, and a
Windows port is available. The implementation of
Gtk+ is in C, however, the Ada binding cleanly
obscures this from the user. Gtk+ is free software
distributed under the GNU Library General Public
License[10Q].

This work is a dired extension of previous work on
RAPID [4]. In that work, we targeted only the TASH
binding to Tcl/Tk and dd not provide an objed-
oriented library of functions for clients to use; however,
we now alow the user to sded from multiple
implementations and also provide an objed-oriented
interface for clients, which simplifies using the
generated code.

6. CONCLUSIONSAND FUTURE WORK
In conclusion, RAPID allows an Ada programmer to
add a GUI to his program in a simple and portable way.
The GUI design tod uses an intuitive visual processto
create the desired interface Not only is the user given
portability across sveral platforms (as bath Tcl/Tk and
JVM implementations are provided), but also the user
has the ability to use the same design tod with different
implementations.

RAPID is freevare and it will run on a variety of
computers. Thiswill makeit an attractive tod for usein
educational settings. At arecent SIGCSE conference it
was pointed out that CS curricula should address
human-computer interface issules and visud
programming [14]. RAPID will alow students to
experiment bath as an implementer and client of
graphical user interface libraries. RAPID is currently
being used to create the user interface for a satellite
ground station.

The source @de for RAPID is available for download
via ftp from the Internet. This provides an opportunity
for others to contribute to the product by adding
additional widgets, additional functionality to the
existing widgets, or addtional implementations. In
particular, we intend to create an implementation using
GtkAda[2]. We aso intend to continue to improve the
product based on our observations from using it, and
input from others. Since RAPID uses the ohjed-
oriented features of Ada 95 in its design, adding
widgets is a draightforward process consisting of
creating a new type and overloading the appropriate
methods.

We have also presented a new solution to the
configuration management problem of having multiple
implementations of a single spedfication via the Pee
Pattern. This is an improvement over the Abstract

Factory Pattern as it allows bath the spedfication and
the implementation to have separate hierarchies. In the
future, we hope to provide a new pattern that has all of
the functionality of the Pea Pattern, whil e allowing the
program to use multiple implementations
simultaneoudly.

7. ACKNOWLEDGMENTS

The authors wish to acknowledge W. Blair Watkinson
II, who contributed significantly to the implementation
of the new RAPID code generator. Additionally, the
authors thank the anonymous reviewers, whose
insightful comments improved the final form of this

paper.

8. REFERENCES

[1] Aonix Inc. Objed Ada, 1997

[2] E. Briot, J. Brobeder and A. Charlet. “GtkAda:
an Ada95 binding for Gtk+",
http://www.ada.eu.org/gtkada.

[3] R. Brukardtand T. Moran. “CLAW, aHigh Levd,
Portable, Ada 95 Binding for Microsoft Windows,”
Tri-Ada’97, pp. 91-104, ACM, 1997

[4] M. Calideand P. Maes. “RAPID: A Free
Portable GUI Designer for Ada,” SIGAda’ 98, pp.
158164, ACM, 1998

[5] C. Comar, G. Dismukes, and F. Gasperoni.
“Targeting GNAT to the Java Virtual Machine,”
Tri-Ada’97, pp. 149161, ACM, 1997

[6] E. Gamma, R. HeIm, R. Johnson, and J. Vlisddes.
Design Patterns. Elements of Reusable Objead-
Oriented Sdtware, Addison-Wesley, 1994

[7] “GLADE: Gtk+ User Interface Buil der”,
http://glade.pn.org.

[8] J. Godling, B. Joy, and G. Stede. The JavalJ
Language Spedfication, Addison-Wed ey, 1996

[9] M. Heaney. “Abstract Factory Pattern” and
“Abstract Factory Revisited”, ACM SIGAda
Patterns WG Archive,
http://www.acm.org/si gada/wg/patterng/
index.html

[10]“GNU Library General Public License”,
http://www.fsf.org/copyl eft/Igpl.html.

[17] Intermetrics. “Ada 95: The Language Reference
Manual and Standard Libraries’, International
Standard ANSI/ISO/IEC-86521995

[12] P. Mattis. “The GIMP Todkit”,
http://mww.gtk.org/docs/gtk_toc.html.

[13] J. Ousterhout. Tcl andthe Tk Toalkit, Addison-
Wesley, 1994

[14] SIGCSE Town Meding, Atlanta GA, February
1998

[15] Sun Microsystems, Inc. Java Native Interface

Spedfication http://java.sun.com/products/
jdk/1.1/docs/guide/jni/ spedjniTOC.doc.html, 1997

[16] T. Westley, “TASH: A FreePlatform-Independent

Graphical User Interface Development Tod kit for
Ada,” Tri-Ada’96, pp. 165178 ACM, 1996

[171 A. Weinand, E. Gamma, and R. Marty. “ET++--

An objed-oriented appli cation framework in C++.”
In Objed-Oriented Programning Systems,
Languages, and Appli cations Conference
Procedlings, pp. 46-57, ACM, 1988

